

Scanned and converted to PDF by HansO, 2002

センサーキッドをお買い上げいただ き，ありがとうございます。
お使いになる前に，このマニュアル
（説明書）をお読みください。本書に は，基本的な使い方の他に，プログラ ム例，使用上の注意も掲載してありま す。
創意工夫することでさらにおもしろ
く，発展した使いかたが可能です。初 めは，プログラム例を打ち込んで実行 してみてください。
それを改造して，オリジナルのプロ グラムやハードウェアを作ってみまし よう。

センサーキ＋リ F の特徴

特徴は以下の通りです。
－付属のセンサーとして，温度センサ一，音センサー，光センサ一があり接続できる。
－同時に三つのセンサーが利用できる。
－A／Dコンバータにより，センサー のアナログ入力をデジタル・データ （0～255）に変換可。
－内蔵ソフト（オートデモ，サンプル・ プログラム）により，リアルタイム でセンサーの状態がわかり，センサ

- の学習ができる。
- サンプル・プログラムを利用すること で，センサー情報のグラフが描け，状況の変化が一目でわかる。また，設定値によりアラームを鳴らすこと ができ，簡単な監視システムに利用 できる。
－センサーの情報がBASICで利用でき

る専用のコマンドを内藏。これによ り，オリジナル・プログラムでのセ ンサー活用が可能。
－外部出力端子を 2 采統装備。専用の コマンドによりコントロールできる。
－センサース力と外部出力を組み合ね せることで，画面内だけではなく，
外部の機器を動作きせるなどの実用的利用が可能。
まさにセンサーキッドは，自分単独 で動作するパソコンから，外部の状㮩 に応じて動作する「感覚を持ったパソ コン゙」に変身させるものなのです。

tンサーキッドの扱いがた

扱う上で基本的なことですので必ず守ってください。守れないと＂センサ ーキッド＂だけではなく，パソコン本体も傷めてしまいます（第1図）。 （1）MSX／MSX2の電源を切った状態で＂セ ンサーキッド＂を差し込む
カートリッジの方向を確かめて，必 ずパソコンの電源を切った状態で差し込みます。
（2）センサーをカートリッジに差し込む カートリッジの上から順に＂温度セ ンサー（サーミスタ）＂，＂音センサー（マ イク）＂，＂光センサー（フォト・トラン ジスタ）＂を差し込みます。
抜き差しは，プラグの部分を持って行い，センサーを引っ張って抜かない ようにします。
【注】センサーはデリケートなので， ていねいに扱いましょう。
（3）パソコンの電源を入れる

準備が良ければ，パソコンの電源を ONにしましょう。内蔵ソフトがスター トレ，メニュー画面が現れます。
（4）電源を切ってから，カートリッジを抜く
センサーキッドを楽しんだ後，カー トリッジを抜くときは必ずパソコンの電源を切った上で行います。

$x=3-$ 画面

電源投入時に出る画面がメニュー画面です（写真1）。
画面の上部には，各センサーからの情報がリアルタイムで表示きれていま す。
-メーターの内容

左のメーターから温度，音，光の順 で並び，入ってくるセンサー値が大き いほどメーターが右に振れます（第2図）。

メーターには＂ピークホールド＂機能が付加されています（オレンジ色で表示される）。これは，入ってきた値の最大値（ピーク）を覚えている機能で す。これにより，どれぐらいの値が入っ てくるかが事前にわかるので，センサ

《写真1》センサーキッドのメニュー画面

《第1図》センサーキッドの使いかた

《第2図》メーターの読みかた

一を利用したプログラミングやサンプ
ル・プログラムに便利に活用できます。
また，メーター内にはセンサー値の
最小値（MIN）と最大值（MAX）が表示
されています。
－メニューの選びかた
画面下には，メニューが表示されて います。上から＂オートデモ＂，＂サン プル・プログラム＂，＂BASIC＂と順にな らび，＂BASIC＂のところで赤く点滅し ていると思います。
メニューの選びかたは，カーソルキ一の上下で赤い点滅を動かします。
＂RETURN：$\square " キ ー を$ 押せばスタート します。
－メニューの内容は？
－＂オートデモ＂は，Dr．Dがセンサーの働きを順に説明し，自分でセンサー を操作して，その働きを知ることが できます（写真2）。
－＂サンプル・プログラム＂は，センサ一の情報を元に，グラフを措かせた り，設定した値でアラームを鳴らす こともできます。
－＂BASIC＂は，BASICプログラムが楽し めるモードですが，センサーキッド

《写真2》オートデモの画面
では，センサーの情報を自分のプロ グラムで生かすための専用コマンド が付加ざれています。

電源を入れた状態にしておくと，＂才一トデモ＂が自動的にスタートします。電源投大時に出るメニューでオート デモを選んでも動作します。
スタートするとパソコン博士Dr．Dが現れ，センサ一の講義が始まります。 ＂スペースキー＂を押すと開始します。 そのままにしておいたり，＂RETURN＂ キーを押すと，メニューに戻れます。 －最初の講義は，温度センサーです
カートリッジの上から1番目に差し込んだ温度センサー（サーミスタ）を手で特ったりして，温度変化を与えて みてください（第3図）。

温度が上がるにつれて値が上がって いきます。つまり，温度が低いほど値 が小さくなり（0に近付く），高いほど

《第3図》温度センサーの使いかた

《第4図》音センサーの使いかた
値が大きくなります（ 255 に近付く）。
－2時限目の講義は，音センサーです カートリッジの上から2番目に差し込んだ音センサー（マイク）に向かっ て，音を入れてみましょう（第4図）。音が大きいほど値が大きく（255に近付く），小さいほど値が小さくなります （0に近付く）。

－最後の講義は，光センサーです

センサーキッドの 3 番目に差し込ん
だ光センサー（フォト・トランジスタ）
を光に当てたり，手でおおつて隠した

りして，光の変化を与えてみましょう （第5図）。
光が当り，明るいほどセンサーの値 が大きくなります（255に近付く）。逆に，暗いほど値が小さくなります（0に近付 く）。
このように, センサーキッドでは, センサーの状態が値として得られるこ とがわかります。
講義が終了するとメニュー画面に戻 ります。

サンプル・プロクラム

メニューの上から2番目は，サンプ ル・プログラムです。
－サンプル・プログラムのメニュー サンプル・プログラムがスタートす ると，メニューが現れます（写真3）。〔グラフ〕は，センサーの値でグラフ を描くモードです。時間変化でセン サ一の状態がチェックできます。〔アラーム〕は，センサーの値が設定

《第5図》光センサーの使いかた

《写真3》サンプルのメニュー画面

《罙真4》グラフを描いているようす

値を通過したとき，アラーム音を出 すことができるものです。
〔設定〕は，サンプル・プログラム内 の各種の設定をするためのモードで， グラフの拡大縮小設定，感度設定， センサーのON／OFF，最小／最大値 の設定ができます。
〔メニュー〕は，サンプル・プログラ
ムを終了し，電源投入時のメニュー
に戻ることができます。
これらは，カーソルキ一の左右で選 び，RETURN（■）キーで突行を開始 します。
－〔グラフ〕を選んだら！
このモードは，センサーの情報を元 にグラフが措けます（写真4）。
画面上部には，センサーのメーター が並び，中央にはグラフを描くための プロッターが見えます。
－（スタート）を選び＂RETURN＂キー を押すと，プロットが開始されます。
このとき，描かれるグラフの色は，
赤色が温度センサー，音センサーが

緑色，光センサーが青色です（各メ ーターの左上の帯の色がそのグラフ の線の色を表します）。

描く速度は，＂設定＂の感度の値で変わり，同様に拡大を選んでおくと プロッタ画面のみになりグラフが大 きく描かれます。
また，描く範囲は，メーター上に あるMIN／MAXの値をもとに自動的 に計算され，フル・スケケールで描く ようになっています。
－（プリント）を選ぶと，結果が印字さ れます。
－（センサー）は，サンプル・プログラ ムのメニューに戻ります。
－アラーム）を選んだら！ このモードは，センサーの值が，設定値を通過したときアラーム音を出す
ことができるモードです（写真5）。
このモードで一度設定しておくと， グラフを選び，描いている間でも，設定値を越えるとアラームが鳴ります。設定方法は，カーソルの左右キーで

設定したいセンサー部分まで赤い朹を動かします。

メーターの各センサ一値の真下にあ る数字は，鳴らすセンサーの値です。 ですから，メーターに表示きれている値以上の値を設定してください。その値を越えたときに鳴ります。もし，小 きければ鳴りません。
値の入力方法ですが，設定値の所で ＂RETURN（■）＂キーを押し，カーソ ルの上下で数値を変えるか，数値の頭 から入力してください（注：数値の頭 に付くゼロは省略できません）。良けれ ばRETURNキーを押します。
たとえば，35に設定するなら035■と入力するわけです。5なら005■ですね。値の設定ができたら，アラーム音を設定します。カーソルの右矢印で右隣 の音符マークに移します。
RETURNキーを押すと入力モードに なります。 0 のときは鳴りませんが， 1，2または3のときアラームが鳴り それぞれ音が違います。

《写真5》アラームも設定できる

設定前は，自動的に MIN／M AXが変化します が，ここで設定 すると，その値 で固定されます。
カーソルの左右矢印でセンサ ーの各メーター の中のMIN／M AX の部分に動 かします。
RETURNキーを押すと入力モードになります。MIN が最小値，MAXが最大値です。入力後RETURNキーで設定終了です。 センサ一情報をグラフに描きたく ないときは，センサーをOFFにでき ます。
カーソルを左右の矢印キーで動か し，各センサーの左上の部分に合わ せます。ここで，RETURNキーを押 すことでON／OFFが指定できます（赤 く光っているときに動作）。
－（センサー）を選ぶと，サンプル・プ ログラムのメニューの画面に戻りま す。

わからないうちにセンサーを使って きたわけですが，＂センサー＂っていっ たい何でしょうか？
人間は，見たり，聞いたり，味わっ たり，臭いを嗅ぐことができ，さわっ ても質感や温度などを感じ取ることが可能です。でも，機械はそうはいきませ ん。

人間なら暑くなったら，エアコンを入れるとか，暗くなったら電灯をつけ るなどといったことは，すぐにでもで きますが，機械だとだめですね。
暑い／寒いという温度を感じること

ができないし，明るいとか暗いとい。 たことがわからなければ，電灯をONに することもできません。
そこで，温度を感じたり，明るさを感じる＂センサー＂というものが考え出され，実用化されているのです。

エアコンに入っているものは，温度 を感じる温度センサー，街灯に付いて いるものは光に感じる光センサーです。
ほかにも，身の回りにはセンサーが いっぱい使われています。こたつやア イロン，泠蔵庫には温度センサーが， カメラには光センサーが，電子レンジ では，出来上りを感じる？センサーが活躍しています。そのほか見えない所 で人間に変わって活躍しているのです。身の回のセンサーを探して見ませ えか？

センサーキッドにはそんなセンサー の一部が付いています。
温度を感じる＂温度センサー＂，音を感じる＂音センサー＂，光を感じる＂光 センサー＂です。
－温度センサー
温度を感じるセンサーとしては，＂サ一ミスタ＂が使われています。
このサーミスタというのは，温度に よって抵抗値（電流の流れにくさ）が変化するものです。センサーキッドの回路ではその抵抗値の変化によって起 こる電圧変化をとらえて， A / D（アナ ログノデジタル）コンバータで値に変換しています。
－音センサー
音の強さを感じるセンサーとして， センサーキッドでは，＂コンデンサー・ マイグが使われています。ラジカセ などに付いているマイクと同様なもの です。
このコンデンサー・マイクは，電圧

《写真 6 》設定時の画面

《写真7》拡大のグラフのモード

を加えないと動作しません。マイクを みると 2 芯で，電圧端子がありません が，実は音声信号の出力端子に動作き せる電圧を加えているのです。
また，センサーキッドの内部では，
アンプ回路が入っていて，微少な音声 の電圧変化を増幅して， $\mathrm{A} / \mathrm{D} コ ン ハ ゙ ー ~$夕に入力しています。
－光センサー

光を感じるセンサーとして＂ホト・ フォト・トランジスタでは，光の強さに トランジスダが付いています。 よります。
これは，トランジスタの仲間に入り ますが，通常のトランジスタと異なり， トランジスタの動作が光の明るさで決 まります。

トランジスタには，エミッタ，コレ
クタ，ベースという三つの端子があり
ますが，入力であるベースの電圧は，

つまり，光の強さによって，トラン ジスタの動作が変わるわけです。よっ て，弱い光でもトランジスタの増幅動作によって動作，光の変化を大きくと らえることができます。

センサー出力を自分のプログラムで生かす方法

センサーがどんなものかわかったと ころで，実際にセンサーの情報を利用 してみることにしましょう。

$t ン+-+\varphi F \sigma$内蔵コマントF

この＂センサーキッド＂では，内蔵 のデモ・プログラムやサンブル・プログ ラムの他に，センサーの情報を自分の プログラムで利用することができます。

センサーキッドがスタートしたとき のメニュー画面で＂BASIC＂を選びま す（カーソルキーの上下で＂BASIC＂を選びRETURN（田）キーでBASICに入る）。
これでOK！センサーキッドの内藏 コマンドがBASIC中に付加されていま す（写真 8 ）。

コマンドは全部で四つ。温度センサ一，音センサー，光センサーの状態がわ かるコマンド。キッドからの情報で接続機器が動かせるコマンドと，キッド のセンサーをブログラムで有効に利用

（写真 8 》BASICを立全げたをこる

できます（第6図，第7図）。
－温度センサーの情報を得る
暖かさ／泠たさがわかるコマンドです。 CALL ONDO（数値変数）

温度と読む

温度センサー（サーミスタ）からの暖かさ情報が，（）内の数値変数に入 ります。

結果は0～255までの値が得られ，冷

たいほど値が 0 に近付き，暖かくなる にしたがって255に近付きます。

注意として，温度センサ一からの情報結果を＂温度＂として直読できませ亿。温度が約 $-25^{\circ} \mathrm{C}$ から約 $90^{\circ} \mathrm{C}$ の範囲 が数値として0から255の数値に変換さ れます。
温度への変換は後で，紹介しています。例：現在の暖かさを調べる
10 CALL ONDO（A）

《第6図》センサーの端子とコマンドの関係

《第7図》センサーキッドのコマンド

20 PRINT A
30 END
－音センサーの情報を得る
音の大きさを知ることができます。 CALL OTO（数値変数） \uparrow
音と読む
音センサー（マイク）からの音の大
きさが得られます。
結果は，0～255までの值が得られ，
音が小さいほど 0 に近付き，大きくな
るに従って255に近付きます。
例：部屋の騒音を調べる
10 CALL OTO（A）
20 PRINT A
30 END
－光センサーの情報を得る
明るざの状態がわかるコマンドです。
CALL HIKARI（数値変数）
$\uparrow \uparrow$
コール 光と読む
光センサー（ホト・トランジスタ）か
らの明るさ情報が（）内の＂数値変数＂
に入ります。
結果は0～255までの値が得られます。
暗いときは値が 0 に近付き，明るくな
るに従って255に近付きます。
例：現在の部屋の明るさを調べる。
10 CALL HIKARI（A）
20 PRINT A
30 END
－外部出カのコントロール
外部出力端子に接続してある機器を
コントロールできます。
出力は二つあり，1をPORT（ポー
ト） 0 ，もう一つをPORT（ポート） 1

としています。
CALL PORT0（数値変数か値）
$\uparrow \uparrow$

ポート0の場合 0 または1
CALL PORT।（数値変数か値）

$$
\text { ポート } 1 \text { の場合 } 0 \text { または } 1
$$

出力端子の状態は，（ ）内の値が＂ 0 ＂ のとき，L（ロウ）0Vとなり，＂1＂ のとき H （ハイ）＋ 5 V となります。
注意として，（ ）内の値は，0また
は1でなければなりません。数値変数 の場合も同様で内容が 0 か 1 以外では エラーがでます（詳しい使いかたは後 で説明しています）。
例：PORT0を5V（ハイレベル）に， PORT1を0V（ロウレベル）にする
10 CALL PORTO（1）
20 CALL PORTI（0）
30 END

《写真 9 》PRINT文で変数を表示
※数値変数は1文字です。

さて，コマンドがわかったところで実際にプログラムしてみましょう。
〔例題〕センサーの状態を表示する センサーのコマンドを実行すると，状態が変数に入りますから，これをPRINT文で表示すればOKですね（写真9）。

プログラムを実行させ，センサーに いろいろな状況を与えてみましょう。表示される数値が変わるはずです。

プログラムは，光センサー用ですが， CALL HIKARIの部分をCALL ONDO にすると温度センサーの状癿，CALL OTOにすると音センサーの状態がわか ります。
〔例題〈リスト1〉〕センサーの状態を グラフ表示させる。

《写真 10 簡単なグラフを描かす

《リスト1》

```
1 ' ex1
-10\CALL HIKARI(A)< 光センサの状態{CALL ONDO(A)\leftarrowで温度センサ
20 PRINT A- 光センサの状態{利{ALLOTO(A)\leftarrowで音センサの内容
    _30 GOTO 10 ()内の変数に状態が入る(O~255の数値)
```

《リスト2》

音をとってくれます。
そのときの音の高ざを記録／再生す
れば，CDの実験ができそうです。
まずは，入ってきた音の状態でパソコ
ン本体からサウンドを出してみましょう。音センサー入カにCDやラジカセのへ $ッ ト ゙ ホ ン$ 出力をつなぎ ，実行してみま
しょう。
命令は，音源を直接コントロールする
＂SOUND＂命令を使いますくリスト3〉。
このプログラムは，音の高さを音セ
ンサーの結果で変えています。
このプログラムでは，音程が音の強弱で変わるので，大力の音が再現され ません。

そこで，音を出しておき，ノイズの高さと音量を入力される音センサーの情報で変えてみます。
パソコンがりズムや音程も変えた例 も載せて置きますくりスト4，5〉。

《リスト4》

センサーの結果は数値ですから，ア ナログ的感覚ではわかりにくいですね。
そこで，結果をバーグラフで表示して
みましょうくリスト2〉。
プログラムは，STRING\＄命令を使っ
て，センサーの結果の値だけ＂＊＂を表示ざせています（写真10）。

CDIEFt

君達もよく知っている＂CD＂はなか なかいい音をしていますね。

そのCDは，音をデジタル化して盤に記録し，再びアナログに戻して再生で きるものです

このデジタル／アナログをセンサー キッドで行ってみましょう。
－入ってきた音の情報でサウンドを鳴 らす。
音の入力は，音センサーから行いま す。CALL OTOで音の強弱によりその結果が変わります。つまり，音をデジ タル化できるわけです。
CDなどでは，音の時間間閭をとても短く区切ってそのときの音の高さをデ ジタル化しっています。つまり，センサ ーキッドでも時間間隔を短く区切って，

《リスト5》

学園祭などでは，何人の人が見にき てくれたのか気になります。＂何人目＂ というのがわかれば，たとえば100人目の人に賞品をプレゼントするなんて いうアトラクションが追加できますね。 さて，プログラムですが＂マザーセ

勉強しなざい！とうるさい捒母さん が見ていないときは，ついつい勉強し ているふりをしてマンガなど読んでし まいますが，そんなとき突然お母さん が来てしまったら大変です。

そこで，光センサーを利用して，光 センサーの前をお母さんが横切ったら アラームが䳟る＂マザーセンサー＂を作ってみましたくリスト6〉

プログラムは，光センサーの状態を常にチェックし，光が大らなくなった らアラームが鳴るようにしてあります。光が入っている間は，CALL HIKARI の値が 0 以上になっていますが，横切 って光が来なくなったら，0に近付く はずです。

センサーを取り付けた状態により アラームのON を設定する感度を行番号10の変数STでセットしてきます。 （光をさえぎったときのアラーム時は，値が小さいとき感度が鈍い，大きいと き感度が高い。光が入ったときは逆）。

手を即く間隔を利用する

音と音が入る間隔を数えて，その値 を利用した何かを作ってみましょう。例えば，パン！パン！と手を叨く間隔 の長さによって，おみくじの内容を変 えたり，音でルーレットのスタート ストップを行い，止めるまでの時間の長さで止めたあとの停止までの数を変 えるとかっいろいろと利用できそうです。 ボイントは，音が入ったかを常にチ ェックし（値が大きくなる），入ったら今度は音が再び入るまで（値が小さい とき）数を数えます。

このとき，初めの音が大ったときに すぐ，次の音が入ったかをチェックす ると，初めの音が長く続いている場合次の音が入ったものと勘違いしてしま います。そこで，初めの音が入ったら時間待ちして，音が切れるまで待ち， カウントを開始しますくりスト7〉。

《リスト6》

20 CALL HIKARI（A）
30 PRINT＂／／／／／マザーアラーム／／／／／＂：PRINI

60 PRTNT
70 PRINP＂ヒカリガ キレタラ アラーム．．．0＂
90 PRINT＂ドキラ デスカ？＂；K\＄＝iNPUT\＄（
100 TF K\＄＝＂＂OR K\＄く＞＂1＂THEN D＝0
110 IF ST＜0 OR ST＞255 THEN BEEP：GOTO 50
120 LOCATE 10，10：PRINT＂／／ゲンザインフダ／／

$\left[\begin{array}{l}140 \text { CALL．HIKART }(\mathrm{A})- \\ 150 \text { TOCATE } 16,12: \text { PRINT A }\end{array}\right.$ 光セ
－ 160 IF $\mathrm{D}=1$ AND AくST THEN 140 （ 170 設定值になっていないとき，再度入力

 210 PRINT＂

320 PRINT＂＊＊＊＊＊＊＊＊＊＊${ }^{* *}$

350 PRINT＂＇
370 PRINT：PRINT：PRTNT
390 PLAY＂TZOOV 15 CE ＂，＂TZOOV15EG＂
－ 400 IF INKEY $\$=\cdots$ THEN IF PLAY（1）THEN 400 ELSE 390 410 ［CALL．PORTO（0）］－ーアラームを止めたとき，外部出力も止める 420 CLS：END
430 ，二ニニニニニニニニニニニニニニニ
40，マザーセンサー PROC
450 ；Copyright 1988／6
460 ＇，by S．TANJI
170 ’ニニ＝＝＝＝＝＝＝ーニーニ＝

《リスト7）

ンサー＂の応用になります。ポイント は，なんと言っても通過中を判断きせ ることです。

つまり，光を出しておき，通過した ときセンサーに光が来なくなったのを チェックして数えるわけですが，ただ そのまま数を数えたのでは，センサー に光が来なくなっている間だけ，数え てしまいます。

そこで，光が来なくなったとき（値 が 0 に近付くとき）動作を開始し，光 が再び入るまで（値が255に近付くま で）待ちます（通過中）。もし，光が入 つてくれば通り過ぎたということです から，数を数えてもよいわけです。

プログラムでは，人数を大きな文字 で表示させてみました。スプライトを利用すればもつと高速できれいな数字 が出せるでしょうくリスト8〉。

また，ある人数になったらファンフ アーンが鳴るなんていうのもおもしろ いかも知れません。

現在の温度は？

温度センサーは，確かに現在の温度 を測定しているわけですが，結果が 0 ～255の数字でしか得られないので，何度 ${ }^{\circ} \mathrm{C}$ の表示ができません。

そこで，値から温度の変換をしてみ ましょう〈リスト9〉。
－氷の温度やお湯の温度で測定！
実測デー夕を載せておうきますが，セ ンサーキッドの部品やセンサーのばら つきにより，温度と値の関係が一定で はありません。

そこで，君達自身で＂値＂対＂温度＂ の関係を測定してください。

まず，温度センサーであるサーミス タの端子とコード部分に接着剤（ゴム
系）を塗り，完全防水させます。そし
て，温度計の先の部分にサーミスタを取り付け，温度と値の関係を読み取り ます。
CALL ONDOの値が落ち着かない ので10回～100回測定して，その平均 を求めるとよいでしょう。

まず，氷水の中にセンサーを入れ， そのときの温度と値を読み取ります。 そのままにしておけば，常温までの関係が読み取れるでしょう。
そのあと，温めたお湯の温度を変え
て，そのときの値を読み取りましょう。結果をまとめ，グラフを描けば，値 から温度を求められるでしょう（第8図）。

〈リスト9〉

現在の温度を

表六してみよう值と温度の関係がわかったら，その値から濫度を表示させてみましょう。
例として，計算で求めるのではなく，値対温度のデータをDATA文に入れて おき，センサーからの値でそのデータ を表示してみましたくりスト10〉。
プログラムには，竘50まで値がゼロ から1ずつの温度をDATA文に入れて おきます。

これを配列変数に書き込み，配列変数を読みだす値にセンサーからの值を そのまま利用しています。つまり，配列変数（値）とすれば，そのときの温度が得られるわけです。
値が1ずつの温度は，温度と値から の関係で計算によって求めます。

通過 人数カウンタの大きな数字の表

示を利用して，測定した温度を大き な数字で表示して みましょう。（写真 11）

表示を工夫する と同し温度測定で もおもしろくなり ますね。《リストい》

温度がわかるよ うになったので，今度はその値を利用してみましょう。 お湯にサーミス夕を入れ，そのと きの温度を測定 します。そして，設定した温度にな

《第 8 図》センサーと温度の比較グラフ例

《リスト10》

《リスト1•

《写真1》大きな文字で現在の温度を表示する
ったらアラームが鳴るプログラムを作
りましょうくリスト12〉
プログラムは，温度表示プログラム が原型となっています。ただ，異なる点は，設定温度を入力きせて，得られ た温度と設定温度を比較して，設定温度以上ならアラームが鳴るようになっ ています。感電に注意／を読むこと。

$=31+\square=1 L$

センサーキッドは，ただセンサーの情報が得られるだけではありません。外部機器をコントロールするための＂外部出力＂も備えています。

つまり，単独で外部機器のコントロ ールもできますが，センサーの情報を元に外部機器を動かすことができるの です。
たとえば，光センサーで現在の明る さを測定して，もし暗くなってきたら，外部出力により電灯をONにするとが，温度センサーで暑くなってきたことが わかったら，扉風機を回すというよう に，センサーとの連携プレーが楽しめ るのです。

センサーキッドの楽しみは，本来こ こにあるのです。

外部出力端子は，他のセンサーの端子と異なり，ステレオ・ミニジャック になっています。（ウォークマンのヘッ ドホン端子でおなじみですね）。
この出力はステレオの接続で言うと左側（端子の先）がPORT0（ポート） で右側（内側）がPORT1（ポート）で す。そしてGND（グランド：アース） は共通です。
そして，コマンド＂CALL PORT0／ PORT1＂命令で端子の電压を変えるこ とができます。
つまり，電圧の変化で動作ずるよう
なものを接続しておけばよいのです。
出力電圧は，OFFのとき＂0V＂（L

《リスト12》

```
    Exg
    10 DIM E(90)
    20 FOR \(T=0\) TO \(89:\) READ E(T) :PRINT E(T): NEXT
    40 LOCATE 6, 17 - アラームを鳴らす設定温度の入カ
    40 LOCATE 6, 17
    60 LOCATE 4,5:PRINT"////ダンザ
```



```
    90 CALL ONDO (A) \(\prec\) 温度測定
    \(1007 \mathrm{ZZ}=2 Z+\)
    120 LOCATE 8, 13: PRINT SPC(30)
    \(130 \mathrm{ZZ}=2 Z / 50\)
    140 IF \(2 Z>89\) THEN 80
    150 …… オンドセョウジ - - -
    160 LOCATE 13,10:PRINT E(2Z);
    170 LOCATE 19,10:PRIN E \(C^{\circ}\)
180 TF E(ZZ)<S TUEN 80]-温度が設定值以下のときは戻る
```



```
310 DATA \(-25,-22.5,-20,-15,-12.5,-10,-7.5,-5,-2.5,0\)
320 DATA \(1,2.5,4,5,6,7,5,9,10,11,12\)
330 DATA \(13,14,15,16,17,18,19,20,20,5,21\)
340 DATA \(22,23,24,24.5,25,26,27,27.5,28,29\)
350 DATA \(29.5,30,30.5,31,32,32.5,33,33.5,34,34.5\)
360 DATA \(35,36,36.5,37,37.5,38,38,5,39,39.3,39.7\)
380 DATA \(44.3,44,7,45,45,5,46,46,3,46,7,47,47,3,47,7\)
390 DATA \(48,48.5,49,49.3,49.5,50,50.3,50.7,51,51.25\)
```



```
410 ,
420 , Copyright 1988/6
430 , Copyright 1988
```

レベル）で ONにしたとき＂＋5V＂（H
レベル) になります。
コマンドは, 前にも説明しましたが,
CALL PORT0 (0) で OFF
(0V),
CALL PORT0((1) で ON
(+5 V)
となります。
【注意】出力端子は絶対にショートさ
せないでください。PORTOとPORTI同
士や各PORT と GND 間をショートさせ
てしまうと, 保護回路が入っていない
ので内部のICが壊われてしまいます。
どんなことがあっても絶対にショート
させないょうにしてください。
また, 出力電流は最大10mA (ミリア
ンペア) までです。よって, 電流を必
要とする豆電球やモーターなどは直接
つなげません (小電流の"赤色"の

LED（発光ダイオード）1個を抵抗を介 して接続できる程度）。
流れ過ぎた場合も同様にICの破壊に
つながります。注意しましょう！
－LED を光らせる
出力がどうなっているかを見るため

に，LED（発光ダイオード）を光らせ てみましょう（写真13）。

使用するLEDは小電流でも明るく光 る赤色のものを使います（緑色などは電流を喰ってしまう）。
LEDの端子電圧を 2 V とし， 5 V が加わっったときに 3 mA 流すとすると，抵抗1K Ω（キロオーム）を接続すること になります（第10図）。

LEDには極性がありますので注意し て接続します。十側（ア）ード：普通足の長いほう）をPORT0につなぎ，一側（カソード）を抵抗を介してGND につなぎます。

CALL PORT 0（1） でLEDが光り，
CALL PORT 0（0）$■$
で消えるはずです。
＊端子の内容を覚えている！
実行してわかることですが，プログ ラムを実行後も端子の電圧は，実行さ せたときのままで保持されています。 これを＂ラッチ＂といいます。
センサーキッドでは，BASICに入っ たとき，端子の状態はいずれも＂OFF （ 0 V ）＂ですが，プログラムでONにす ると，プログラムが終了しても，BASIC を終了したり，電源を切らない限り，

となります。
 せながPORTとGND間をこコートさせ てしまうと，保護回路が入っていない ので内部のICが壊われてしまいます。 どんなことがあっても絶対にショート させないょうにしてください。 また，出力電流は最大10mA（ミリア ンペア）までです。よって，電流を必 つなげません（小電流の＂赤色＂の

《第10図 LED 点灯回路

《第9図》外部出力端子の接続と指示コマンド

《写真｜2》温度を表示

《写真13》赤いLEDのほうが消費電流が少ない

《写真14》圧電ブザー

その状態を覚えています。
プログラムでのコントロールの際に
覚えておきましょう。
－ブザーを鳴らす
同様に今度は，ブザーを鳴らしてみ ましょう（写真14）。

$$
+5 \mathrm{~V} \text { で鳴るブザー (圧電ブザーに駆 }
$$

動回路が入っているものがよい)をPORT
Iにつないでみましょう(第い図)。
すると,

CALL PORT1（1）\square でブザーか鳴り，
CALL PORT1（ 0 ） で鵬りやすはずです。

また，これをLEDと連動することも できます。プログラムを考えて見てく ださい。

－LEDを点滅させる

きて次は，接続したLEDをチカ！チ力！と点滅させてみましょう。

ただ単に点蔵させたのではおもしろ くありませんから，キーボードの＂ス ペースキー＂が押されたら点滅させ， ＂RETURN（■）＂キーが押されたら，ブ ザー音とともに点滅を終了させてみま しょう。

点滅は，CALL PORTO（1）でONに
L，CALL PORT0（0）でOFF させる と，早過ぎて点滅になりませんから時間待ちを入れて点滅するようにします。 どうですか？自分のプログラムしだ

《リスト14》

5 ＇EX12－2

$10 \quad Z Z=6: T=0: F=-1$
20 CALL PORTO（O）：CALL FORT1（0）－－－出力をすへてOFFに

$40 \mathrm{~K} \$=\mathrm{TNKEY}$ \＄———リアルタイムキー入力（倠数K\＄に内容が入る）
50 IF K\＄＝＂THEN $\mathrm{F}=1$－スペースキーが押されたとき
60 IF $\mathrm{K} \$=\mathrm{CHR} \(13) THEN $\mathrm{F}=0 \rightarrow$－
$\left.\begin{array}{llllll}70 & \text { IF } & \mathrm{F}=1 & \text { THEN GOSUB } & 100 \\ 80 & \text { IF } & \mathrm{F}=0 & \text { THEN GOSUB } & 170\end{array}\right\}$ 押された内容の処理を行なう
$80 \mathrm{TF} \mathrm{F}=0$ THEN GOSUB 170$\}$
-90 GOTO 30

$110 \mathrm{TF} \mathrm{T}<0$ THEN $\mathrm{P}=0$

140 CALL PORTO（P）-22 蛮数Pの値で

160 RETURN カウント
160 RE＇TURN カウント
170 －ブザーON \＆テンメッシュウリョウ
170 ンース ブザーON \＆テンメッシュウリョウ－
180 CALL PORT1（1）：CALL PORT0（1）
180 CALL PORT1（1）：CALL PORTO（1）－—外部出力0と1をON（LEDが光り

200 CALL PORT1（0）：CALL PORTO（0）－LEDが消え，ブザーも止る
$210 \mathrm{~F}=-1$ ———ーが押されていない状態にする
220 RETURN

240，PORTチェック LED\＆ブザー－PROG．
250，Copyright 1988／6
260，by Saichi－Tanji

《第\｜図》LED \＆ブザー出力回路

参考 㥜料

センサーキッドをもつと詳しく知り たい方のために，回路図などの資料を載せておきます（第12図）。

応丮

センサーキッドの各センサーの入力
は，接続するセンサーが決められてい ますが，他のセンサーやオリジナルの センサーなどを接続することができま す。
温度センサーである＂サーミスタ＂
は，温度により抵抗値が変化するもの

ですから，逆に言えば抵抗のあるもの を接続することで，抵抗値によって値 が変化きせられるわけです。
たとえばバリオーム（可変抵抗）や ニクロム線の抵抗となるものをつなげ られるということです。ニクロム線で身長計のセンサーを作ったり，お風呂 の水位をリアルタイムで観測できるか もしれません。CDSを接続して，明る さの測定もできるかもしれません。

また，光センサーである＂フォト・ トランジスダは明るさに応じて，コレ クタノエミッタ間の電流が変化し，結果的に電圧変化として利用しています から，電圧の変化のあるものやサーミ ス夕同様に抵抗となるものを接続する

マイク入力には，アンプ回路が組み込まれています。マイク以外には，CD やラジカセなどの音源が接続できます。

榑修•修理

センサーキッドを利用していて，も しセン゙サーが壊れてしまったら，同様 な部品を購入して修理もできます。

このとき，音センサーである＂マイ ク＂や光センサーの＂フォト・トラン ジスタ＂には極性がありますので，注意してハンダ付けします（第13図）。

《第 13 図》使用センサーとその回路

感電に注意しょう！

センサーキッドをお風呂場など水に濡れ た場所で使うと，感電する危険性がありま す。

パソコン本体をお風呂場などに持ちこん だり，センサーをむきだしのまま水につっ こんだりするようなことは，絶対にやめて ください！！

もちろん，口にふくんだりすることも危 ないので，してはいけません。

電気の危険性についてよく知らない人は，通常の使い方だけで実験してください。ま た，センサーのコードをのばしたりする場合など，特殊なことにチャレンジするとき は，適当な指導をしていただける方に相談 しましょう。

なお，本機の使用法を誤って発生した事故や故障については，その責を負いかねま すので御了承下さい。

電波新聞社
※本機に関するお問い合わせは電波新聞社出版部03－445－6111にお願いします。 ※近く本機の応用例を載せた本が出版される予定です。お楽しみに。

