Service Manual
 Personal Computer
 $[\mathrm{GX}$

Design and Specifications are subject to change without notice.

Scanned and converted to PDF by HansO Original supplied by Bas Kornalijnslijper, MCWF

CONTENTS

Location of Controls and Components 3
Memory Map 5
I/O Map 5
General for Peripheral Circuit 7
Display Screen, Character Codes 20
Self Test 21
Block Diagram 33
Disassembly Instructions 34
Adjustment 39
Connector Pin Connection 40
Wiring Connection Diagram 42
Schematic Diagram (Main Board) 43
Printed Circuit Board (Main Board) 47
Schematic Diagram \& Printed Circuit Board (Power Source) 49
Schematic Diagram (Video Board) 50
Printed Circuit Board (Video Board) 51
Printed Circuit Board (Keyboard) 52
IC Block Diagram 53
Parts Location 62
Parts Location (Keyboard) 63
Packing Instruction 64
Replacement Parts List 64

identifying the terminals in your plug, proceed as follows:

- The wire which is coloured blue must be connected to the terminal which is marked with the letter N or coloured black.
-The wire which is coloured brown must be connected to the terminal which is marked with the letter L or coloured red.
Notes:
- Disconnect the mains plug from the supply socket when not in use. - Do not remove cover. Live parts inside.

Location of Controls and Components

Rear View

(14) Sound output jack
(1) Function keys

Key used for easy inputs of predefined character strings.
(2) Power indicator

Lights when the power switch is turned on and goes out when the power is turned off.
(3) Special keys

Keys used to select, correct, and edit input characters, and control program execution.
(4) Space bar

Bar used to input a space between characters.
(5) Character keys

Keys used to input characters.
(6) Cursor keys

Keys used to move the cursor.
(7) (8) General port 1, General port 2 Connectors used to connect joysticks, tablets, etc.
(9) (10) Slot 1. Slot 2

Slots for MSX cartridges.
(11) Printer connector

Connector used to connect a printer, plotter, etc.
(12) Cassette Input/Output Connector Connector used to connect a cassette tape recorder.
(14) Sound output jack

Audio (sound) signal output jack. Connects to the TV audio input terminal.
(15) Video output jack

Video signal output jack. Connects to the TV video input terminal.
(16) RF output jack

RF signal output jack. Connects to the TV antenna terminal.
(17) Channel adjust trimmer After connecting the TV and computer, turn on the power switch. Set the TV to UHF channels 35-37. Insert the adjustment screwdriver into the channel adjust trimmer and adjust for a clear picture.
(18) Power switch

Power turns on when set to "ON" and the power indicator lights up. Power turns off when set to "OFF".
(13) Power cord

Memory Map (when using BASIC)
Address in hexadecimal

Area storing the program to which line numbers have been added.
Area for variables. For character variables, this area stores the pointer which points to the character string (string descriptor).
Area for array variables. If the array variables are of the character type, this area stores the pointer which points to the string in the string area. This area is allocated when the DIM statement is executed and an array with a subscript of 10 or less is used. The free area is an unused area. The size of the free area is the size of the user area minus the sizes of the character area, stack area, variable area, and program area. The size of the free area can be obtained by the FRE function.
Stack area storing the return address for BASIC when the FOR-NEXT statement or GOSUB statement is executed.
Area storing the strings contained in the character variables and array variables. The size of the string area is as specified in the CLEAR statement. If no size is specified in the CLEAR statement, an area of 200 bytes is allocated.
Area used during the input and output of files. This area is allocated according to the number specified in the MAXFILES statement.
The high limit address can be set in the CLEAR statement to F 380 or below so that an area (such as for machine language subroutines) can be allocated up until the work area for free use by the user.

I/O Map

PPI (8255) Bit Assignment

Port	Bit	I/0	Signal Name	Description
A	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { CSOL } \\ & \text { CSOH } \end{aligned}$	Specifies the slot number for addresses $\& H 0-\& H 3 F F$
	$\begin{aligned} & 2 \\ & 3 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { CS1L } \\ & \text { CS1H } \\ & \hline \end{aligned}$	Specifies the slot number for addresses \&H4000- $\& \mathrm{H} 7 \mathrm{FFF}$
	$\begin{aligned} & 4 \\ & 5 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{CS} 2 \mathrm{~L} \\ & \mathrm{CS} 2 \mathrm{H} \\ & \hline \end{aligned}$	Specifies the slot number for addresses \&H8000-\&H8FFF
	$\begin{aligned} & 6 \\ & 7 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { CS3L } \\ & \text { CS3H } \\ & \hline \end{aligned}$	Specifies the slot number for addresses \&HCOOO-\&HFFFF
B	0 7 7	Input		Keyboard return signal
C	$\begin{array}{ll} \hline 0, & 1 \\ 2, & 3 \\ \hline \end{array}$		$\begin{array}{ll} \hline \text { KB0, } & \text { KB1 } \\ \text { KB2, } & \text { KB3 } \\ \hline \end{array}$	Keyboard scan signal
	4		CASON	Cassette control (ON when L)
	5		CASW	Cassette write signal
	6		CAPS	CAPS lamp signal (lights when L)
	7		SOUND	Software controlled sound output

e mark are provided to optional equipment. - For details on the VDP, PSG, and PPI, see their respective manuals. - Addresses $\& H 40-\& H F F$ represent the system reserve area.

PSG Bit Assignment

Port	Bit	I/O	Bit 6 at Port B	Connector Pin Number
A	0	Input	Low level High level	Port 1 pin 1 Port 2 pin 1
	1		Low level High level	Port 1 pin 2 Port 2 pin 2
	2		Low level High level	Port 1 pin 3 Port 2 pin 3
	3		Low level High level	Port 1 pin 4 Port 2 pin 4
	4		Low level High level	Port 1 pin 6 Port 2 pin 6
	5		Low level High level	Port 1 pin 7 Port 2 pin 7
	6		Keymatrix assignment input (low level)	
	7		CSAR (Read signal of the cassette tape)	
B	0	Output	Port 1 pin 67	
	1		Port 1 pin 7 Note 2	
	2		Port 2 pin 6	
	3		Port 2 pin 7 ,	
	4		Port 1 pin 8	
	5		Port 2 pin 8	
	6		Input select of port A	
	7		-	

Note 1: Either port 1 or 2 is selected by the output level of bit 6 at port B. Writing a "l" to bit 6 at port $B \rightarrow$ high level output \rightarrow port 2 selected. Writing a " 0 " to bit 6 at port $B \rightarrow$ low level output \rightarrow port 1 selected.
Note 2: Be sure to output a high level at these pins if port B is to be used for input.

General for Peripheral Circuit

CPU (Central Processing Unit) Peripheral

 CircuitCPU Peripheral Circuit consists of CPU, Clock Generator Circuit and Reset Circuit.
Z80A (μ PD780C-1, IC8) is used as CPU. An interruption system is maskable interrupt, not non-maskable. AND signals of VDP's $\overline{\mathrm{INT}}$ and an external interrupt are fed to $\overline{\text { INT }}$ terminal. In Ml cycle, 1 WAIT is inserted, and external WAIT is accepted asynchronously with CLOCK signal. $\overline{B U S R Q}$ and $\overline{B U S A K}$ are not used, neither DMA function.

Fig. 1 CPU Peripheral Circuit

The CLOCK Generator Circuit--Serial Oscillation Circuit of 74 HCO 4 (IC43)-oscillates 10.6781522 MHz to generate VDP CLOCK and, at the same time, generates CPU CLOCK in the circuit of 74LS74 (IC42) and 74 LS 107 (IC47) which divides VDP CLOCK by 3 to get 3.559384 MHz . Moreover, CLOCK Generator Circuit divides CPU CLOCK into halves to get 1.779462 MHz by 74LS74 (IC39) and generates PSG CLOCK.

Fig. 2 CLOCK Waveform
The Reset Circuit utilizes the charge of CR Circuit (C13 and R26), but it takes too much time to raise RESET signal by only the CR. So the circuit is compulsively raised by Q10, when each end of C becomes about 1.5 V . Therefore, RESET signal changes "L" into "H" in 60 ms after power source $O N$.

Fig. 3 RESET Signal
ROM R
This system uses 32 K x 8 bits MASK ROM (IC32, MN23257) which builds in the MSX BASIC. $\overline{\mathrm{CS}}$ is connected to SLTO, and $\overline{\mathrm{EE}}$ to Al5. Access time is available up to 325 ns .

Fig. 4 ROM Periphery

Main Memory Peripheral Circuit consists of Main Memory and Memory Access Circuit.
The Main Memory has a 64 KB memory space by using eight $16 \mathrm{~K} \times 8$-bit DRAMs. Refresh is performed by RAS-ONLY REFRESH. Because RAS pre-charge time in refreshing Ml cycle is ensured to be 100 ns by Timing Chart, the access time of RAM must be 150 ns. In the Memory Access Circuit, $\overline{R A S}$ is generated by $\overline{M E R Q}$ or RESH and CLOCK. The switchover of the row address to the column address is
done by the multiplexer 74LS157 and $\overline{\mathrm{CAS}}$ is generated by being staggered the time, with the condenser C35, when the column address is outputted. C35 ensures that the $\overline{C A S}$ will be "L", considering differences of the output timing of 74LS157, after the switchover of the row address to the column address.
$\overline{\mathrm{WE}}$ is generated by $\overline{\mathrm{BWR}}$, and $\overline{\mathrm{OE}}$ by $\overline{\mathrm{BRD}}$.
$\overline{R A S}, \overline{C A S}, \overline{W E}$ and $\overline{O E}$ protect from the undershoot by being inserted a resistance for the damping.

Fig. 5 I/O Select Peripheral Circuit

I/O Select Peripheral Circuit
All of Input/Output with external equipment are done through $I / 0$ ports in this system, and an access signal of each port is generated in this circuit. I/O Select Peripheral Circuit consists of I/O Select Generator Circuit, Chip Access Signal Generator Circuit and Short Write Generating Circuit.

Fig. 6 I/O Select Peripheral Circuit

I/O Select Generator Circuit generates I/O Select signal according to the I/O map. This signal is generated through high-order five bits in low-order byte of Address Bus and through BIORQ and Multiplexer 74LS138 (IC25). In order to ensure data stabilizing time when PSG is engaged in WRITE, and to be considered
that the output delay time is 350 ns when PPI is in WRITE, WRITE signal is raised faster by Short Write Generator Circuit.
Chip Access Generator Circuit generates $\overline{\mathrm{CSW}} / \overline{\mathrm{CSR}}$ (VDP Access signals), $\overline{\mathrm{PP} I W R /}$ PPIRD (PPI Access signals) and BCl/BDIR (PSG Access signals) from I / O Select signal and $\overline{\mathrm{BWR}} / \overline{\mathrm{BRD}} / \overline{\mathrm{SWR}}$.

VDP (Video Display Processor) Peripheral Circuit

This system uses TI's TMS9929A as CRTC. This LSI's features are as follows.
. 256×192 pixels resolution
. Used 4,8 and 16 KB as VRAM (16 KB is used in MSX.)

- Automatic refreshing function of VRAM
- Composite video output, in PAL system
- Interruptible in every frame
- Automatic processing of the sprite screen.

	Resolution	Pattern Size	Patterns	Colours	Sprite	Screen
Graphic I (SCREEN 1)	192×256 pixels	8×8 pixels	256 patterns	16 colours	usable	24rows x 32columns
(768)						

Table 1 Screen Mode of VDP.

A VDP's operation depends on values of 9 registers in VDP and a table on VRAM. VDP has three control signals which are $\overline{\mathrm{CSW}}, \overline{\mathrm{CSR}}$ and MODE. MODE signal distinguishes which should be a candidate for

READ and WRITE, VDP resistor or VRAM. In "L", VRAM is the candidate. AO is connected to MODE terminal. $\overline{\operatorname{CS}} \bar{R}$ is generated by Inverted NAND of $\overline{C S V D P}$ and $\overline{\mathrm{RD}}$, and $\overline{\mathrm{CSW}}$ is by OR of $\overline{\mathrm{CSVDP}}$ and $\overline{\mathrm{WR}}$.

Fig. 7 VDP Peripheral Circuit Diagram

PSG (Programmable Sound Generator)
Peripheral Circuit

PSG Block consists of PSG and General Port Circuit. This system uses GI's AY-3-8910A as PSG, which makes it enable to produce 8 octaves, triple chords and noise-sound effects. This LSI builds in a tone generator, a noise generator, an envelope generator and 16 registers whose each value decides the frequency
and the volume of the sound by software. This LSI has also two I/O ports which are available for Input/Output with General Port, Keyboard Control and input to a cassette tape recorder. In this occasion, each bit in port A / B is assigned as the following table.

Signal	I/O	Function
IO A0	Input	PORT 1-1 PORT 2-1
IO Al		PORT 1-2 PORT 2-2
IO A2		PORT 1-3 PORT 2-3
IO A3		PORT 1-4 PORT 2-4
I0 A4		PORT 1-6 PORT 2-6
IO A5		PORT 1-7 PORT 2-7
I0 A6		Input specifying the layout of Keyboard
I0 A7		Read signal input from a cassette tape recorder
IO B0	Output	PORT1
IO B1		PORT1
IO B2		PORT2
10 B 3		PORT2
IO B4		PORT1
IO B5		PORT2
I0 B6		Selecting input of PORT A "L"=PORT 1 " $\mathrm{H}^{\prime}=$ PORT 2
I0 B7		-_

Table 2 Bit-Assignment in PSG Port

PSG has three control lines--BDIR, BCl and $B C 2--$, whose control signals in

Input/Output are shown as the following table.

BDIR	BC1	BC2	State
0	0	1	Not Selected
0	1	1	Readout from PSG
1	0	1	Writing in PSG
1	1	1	Address latch

Table 3 PSG Control Signal

In General Port Circuit, there are two (IC28, 33) and open collector gate general ports (Input 4-bit, Output 1-bit and I/O 2-bit) using multiplexer 74LS157

74LS09 (IC37, 40).

Fig. 8 PSG Peripheral Circuit

CF-2700 uses AY-3-8910A whose maximum access time is 200 ns and minimum width of write data pulse is 165 ns .

PPI (Programmable Peripheral Interface) Peripheral Circuit

PPI Block consists of PPI (using μ PD8255AC-5), Keyboard Control Circuit and Slot Signal Generator Circuit. CF-2700 adopts MODE 0 (ports A,C for output, and port B for input). This LSI is utilized for specifying the slot num-

Port	I/O	Bit	Function
A	Output	$0 \sim 7$	Specifying the Slot Number
B	Input	$0 \sim 7$	Keyboard Return Signal
C	Output	$0 \sim 3$	Keyboard Scan Signal
		4	Controlling the motor of a cassette tape recorder 0=0N 1=0FF
		5	Signal writing in a cassette tape recorder
		6	Controlling Keyboard CAPS Lamp 0=LIGHTING
		7	Output of Click Sound

Table 4 Port function in PPI

Fig. 9 PPI Peripheral Circuit
Port A is used for specifying the slot number of address bank in units of 16 KB. Port A is preset for this operation as the following table.

Bit of Port A	Contents
PA1 PA0	Slot Number of Page 0
PA3 PA2	Slot Number of Page 1
PA5 PA4	Slot Number of Page 2
PA7 PA6	Slot Number of Page 3

Table 5 Meaning of each bit in Port A
Keyboard Scan signals ($0-3$ bits) of Port C are decoded by 74LS145 (IC46) and inputted to Port B through Keyboard.

Slot signal is generated from a signal which is set up in Port A by data selector 74LS153 (ICl0) and decoder 74LS139 (IC23).

Cartridge

Signals connected to Cartridge Slot are described in the table 6 and explained in the table 7.
Data bus is connected via Buffer 74LS245 (IC5). When I/O or Slot 0 is selected, the mainframe and the slot are separated and the bus is controlled to go to the mainframe in READ and INTERRUPT operations.

Fig. 11 Data Bus/Buffer Circuit $\overline{\mathrm{CSI}}, \overline{\mathrm{CS} 2}$ and $\overline{\mathrm{CS} 12}$ are generated from Al5 and A14 by decoder 74LS139. (IC23).

Fig. 12 Chip Select Generator Circuit

Fig 10 Slot Signal Generator Circuit

Pin Number	Name	I/O Note 1	Pin Number	Name	$I / 0$ Note 1
1	$\overline{\mathrm{CSI}}$	0	2	$\overline{\mathrm{CS} 2}$	0
3	$\overline{\text { CS12 }}$	0	4	SLTSL	0
5	RESERVED	-	6	$\overline{\mathrm{RFSH}}$	0
7	WAIT	I	8	$\overline{\text { INT }}$	I
9	MI	0	10	$\overline{\text { BUSDIR }}$	I
11	$\overline{\text { IORQ }}$	0	12	$\overline{\text { MERQ }}$	0
13	$\overline{W R}$	0	14	$\overline{\mathrm{RD}}$	0
15	RESET	0	16	RESERVED	-
17	A9	0	18	A15	0
19	Al1	0	20	A10	0
21	A7	0	22	A6	0
23	Al2	0	24	A8	0
25	Al4	0	26	Al3	0
27	A1	0	28	A0	0
29	A3	0	30	A2	0
31	A5	0	32	A4	0
33	D1	I/0	34	D0	I/0
35	D3	I/0	36	D2	I/O
37	D5	I/0	38	D4	I/0
39	D7	I/0	40	D6	I/O
41	GND	-	42	CLOCK	0
43	GND	-	44	SW1	-
45	+5V	-	46	SW2	-
47	+5 V	-	48	+12 V	-
49	SUNDIN	I	50	$-12 \mathrm{~V}$	-

a) Note 1:The distinction of Input/Output is based on the mainframe. b) Reserved terminals are forbidden using.

Table $6 \quad \begin{aligned} & \text { Connected Signal Lines of } \\ & \text { Cartridge Bus }\end{aligned}$

Pin No.	Name	Contents
1	CS1	ROM 4000...7FFF Address Select Signal
2	CS2	ROM 8000... BFFF Address Select Signal
3	CS12	ROM 4000... BFFF Address Select Signal (256 K for ROM)
4	SLTSL	Slot Select Signal adds Select Signal peculiar to each slot
5	RESERVED	For Future use
6	RFSH	Refresh Cycle Signal
7	WAIT	WAIT Request Signal to CPU
8	INT	INTERRUPT Request Signal to CPU
9	M1	CPU Fetch Cycle Signal
10	BUSDIR	Control Signal for direction of external Data Bus Select a cartridge and outputs L level from each cartridge except Memory at the same time when the data are outputted.
11	IORQ	I/O Request Signal
12	MERQ	Memory Request Signal
13	WR	Write Timing Signal
14	RD	Read Timing Signal
15	RESET	System Reset Signal
16	RESERVED	For furture use
17~32	A0~A15	Address Bus Signal
33~40	D0~D7	Data Bus Signal
41	GND	Ground
42	CLOCK	CPU Clock 3.559 MHz
43	GND	Ground
44,46	SW1, SW2	For protect in Connect/Disconnet
45,47	+5 V	Powr Source +5 V
48	+12 V	Power Source +12 V
49	SUNDIN	Sound Input Signal (-5 dbm)
50	-12 V	Power Source -12 V

Table 7 Explanation of Signal Lines

Cassette Interface Circuit
MSX uses FSK method for recording, whose
2400 baud and the transfer waveform is transfer rate supports 1200 baud and shown in the table 8.

	0	1
1200 baud		
2400 baud	\square 2400 Hz 1 Wave	

Table 8 Data Waveform

Therefore, Interface Circuit must ensure $1200 \mathrm{~Hz}-4800 \mathrm{~Hz}$ transfer.
(i) Input Circuit

Fig. 13 Cassette Input Circuit
Input terminal is terminated by the 150 Ω resistance whose value is set for adjusting to the amplifier's characteristic on the cassette. This circuit has the gain by using OP-Amp. and also the characteristic as the filter, the waveform characteristic at this time is as follows.
This circuit uses a high-speed comparator to ensure the reproducing of 4800 Hz waveform. The standard voltage supplied to the comparator is set to about 2.5 V by resistance-division. This voltage is used in the bias voltage at the Θ terminal. R54 and R55 let the circuit have the hysteresis characteristic and increase the noise margin.

Fig. 14 Waveform Characteristic in Cassette Input Circuit

This circuit using the DROPPER system is to supply four kinds power of $+5 \mathrm{~V},-5 \mathrm{~V}$, +12 V and -12 V .
In a primary circuit, there is a line filter composed of condensers and coils that is to prevent a malfunction due to external noises and reduce useless radiation outward.
In a voltage-regulator circuit of a secondary circuit, +5 V circuit consists of discrete elements and $+12 \mathrm{~V},-5 \mathrm{~V},-12 \mathrm{~V}$ circuits are composed of general constant-voltage regulator ICs.
(1) Operation of +5 V Voltage-Regulator Circuit
A voltage that is rectified in full wave by diodes (D7, D8) and flattened by electrolytic capacitor (C7) is applied into a emitter (transistor Q1). The base current of the transistor Q1 is governed by a transistor Q7. The stabilization of the output voltage is achieved by varing the base current of the transistor Q1 that is to change Vce of Q1.

This circuit produces a required reference voltage by dividing +12 V constant-voltage output with resistances R5, VR1 and R80, that is, enables to vary an output voltage by adjusting a value of VR1 (voltagedividing ratio).
The detection of errors between the reference and output voltages is made in a differential amplification circuit of transistors Q8 and Q2. This control method is as the following.
(1) +5 V output voltage ascends.
(2) Base current of the transistor Q8 decreases.Current flowing into the resistance Rl decreases.
(4) Base current of the transistor Q7 decreases.
\downarrow
(5) Base current of the transistor Q1 decreases.

\downarrow

(6) VCE of the transistor Q1 increase. \downarrow
(7) Output voltage descends.

When the output voltage descends, the contrary phenomena to the above happens--the VCE of the transistor Q1 decreases and the output voltage increases.
(2) Operation of +12 V Voltage-Regulator Circuit
A voltage that is rectified in full wave by diodes (D3, D5) and flattened by an electrolytic capacitor ClO is inputted into an input terminal of a regulator IC (IC1). This IC1, which is for the constantvoltage power supply, outputs stabilized +12 V into an output terminal. Moreover, this IC can control the output with an external signal, but we will describe it in details later.

(3) Operation of -12 V Voltage-Regulator Circuit
A voltage that is rectified in full wave by diodes (D4, D6) and flattened by an electrolytic capacitor C6 is inputted into an input terminal of a regulator IC (IC2). This IC2, which is for the constantvoltage power, outputs stabilized -12 V into an output terminal.
(4) Control of Output Voltage with External Signal
The PSW terminal can control the output of +5 V and +12 V . When the PSW terminal is connected with GND, each voltage is outputted normally, and when it is open each voltage becomes about $0 \mathrm{~V} .(-12 \mathrm{~V}$ and $-5 \mathrm{~V}$ are left as it is.)

This control is made by transistor Q9 and ICl. Pin No. 4 in ICl is a terminal of which output voltage becomes about 0 V when current more than about $500 \mu \mathrm{~A}$ flows. If controlled this pin externally, it enables to control +12 V output voltage. The +5 V output is to be 0 V with +12 V being 0 V , because its reference voltage is made by dividing +12 V , as described in (1).

The output voltage control by the Pin No. 4 in ICl is as the following.
(1) PSW terminal is connected with GND.
(2) Transistor Q9 is cut off.
(3) Current of Pin No. 4 in ICl is near about 0 V .

\downarrow

(4) Output voltage of ICI is +12 V .

SW terminal in open:
(1) PSW terminal is opened.
(2) Transistor Q9 is on.
(3) Current of Pin No. 4 in ICl flows. \downarrow
(4) Output voltage of IC1 is about 0 V .

R38 and C38 compose of a time constant circuit that delays rising +5 V and +12 V. R37 is a resistance for an electric discharge of C38.

Display Screen

Note the following points for an easy to see screen.

- Depending on the type of TV, the left and right edges may not be displayed on the TV screen. This may result because the display area of the TV and that of the personal computer are different. If this is the case, do not use the shaded part shown in the illustration. In the text mode, set the displayed columns using the WIDTH command to 28-29 (see the "MSX-BASIC manual"). (It is preset to 37 columns when the power is turned on.) In the graphic mode, do not use the $10-16$ dots on the left and right sides when writing a program.

32 -column text mode

This part is cut off.
40-column text mode

- Do not adjust the screen any brighter than necessary.
- Exercise care in combining colors when programming. The screen may be hard to read due to blurred colors depending on the combination of the foreground color (color of characters, etc.) and the background color. White on blue (Color 15, 5) is a relatively easy to distinguish combination. (Color 25, 4, 4 is set when the power is turned on.)
- The color and volume settings on the TV for personal computer use are slightly different from that for TV broadcast reception. Adjust according$1 y$ when switching from a TV broadcast to the personal computer.
Note 1: Character patterns are displayed as $8 \mathrm{H} \times 6 \mathrm{~W}$ dots/character in the 40-column text display mode (SCREEN 0). (8 H x 8 W dots/character in the $32-$ column text display mode.) For this reason, the right side of some graphic symbols may be cut off when displayed. (Letters and numbers are always displayed as full characters.)

Character Codes

Examples: The character code for A is $\& H 41=16 \times 4+1=65$ (Decimal)

Input and output of Graphic Symbols

Graphic symbols are input and output by adding a graphic header (\&HOl).
For example, to input and output "O" the graphic header is used as follows. Input from the keyboard: Two bytes, \&HOl and $\& \mathrm{H} 4 \mathrm{~A}$, are input.
Output to the TV or printer: Two bytes, \&HO1 and \&H4A, are output.
Example: To output to a TV:
PRINT CHR\$ (1); CHR\$ (\&H4A);

Reference: Correspondence between decimal and hexadecimal numbers.

Decimal	$0 \sim 9$	10	11	12	13	14	15	16	17	18	\ldots	31	32	33	\ldots	63	64	\ldots
255																		
Hexadecimal	$0 \sim 9$	A	B	C	D	E	F	10	11	12	\ldots	1 F	20	21	\ldots	$3 F$	40	\ldots
FF																		

In other words, $X_{2} X_{1}$ (hexadecimal)

$$
=x_{2} \times 16+X_{1} \quad(\text { decimal })
$$

Examples: $\& H 1 F=1 x 16+15=31$ (decima1) $\& H F F=15 \times 16+15=255$ (decima1)

Self Test

1. Outline of Self Test

This Self Test Program is prepared for the purpose of testing hardware functions of Personal Computer CF-2700. This program is to start at the 8000 H address and materials in 16 KB ROM is supplied through the slot.

2. Self Test Program

This program is made up of two main CHECK parts.

1) The first CHECK part-- forbasic checks.
(1) Check the diagnostic program on. Make sure that this program is started correctly.
(2) VDP/VRAM basic check

Check if the interrupt flag is correctly set or reset (between CPU - VPD), and the Read/Write of VRAM (CPU - VDP - VRAM) is done correctly.
(3) Printer basic check

Check if the printer is connected properly and can print out checked results.
(4) RAM check Check if data are correctly written in a specified address.
(5) PSG check

Check if the Read/Write of PSG register (CPU - PSG) and the data input/output of I / O port (PSG PSG) are made correctly.
(6) Key input check Check if the key input works correctly.
2) The second CHECK part -- for checks including external peripheral equipment.
(7) ROM check

Check if the interpreter operates correctly.
(8) Screen display check

Check if the screen displays correctly.
(9) Cassette I/O check

Check if signals are inputted/ outputted correctly.
(10) Joystick input check

Check if the joystick sends its
signals correctly by operating it.
(11) Print out check

Check if the printer is sent the correct print out data.
(12) Audio output check

Check if the audio sound is outputted properly.
3. Self Test Procedure

1) Equipment required
(1) Test Personal Computer,

Model No.: CF-2700............. 1 unit
(2) Printer or Plotter
(designed for MSX)............. 1 unit
(3) Joystick

Model No.: CF-2201............. 1 unit
2) Connection of Equipment

3) Preparation
(1) Connection should be made as shown above.
(2) Feed the paper into the printer.
(3) Use a printer designed for MSX. Any printers and plotters can be whichever conform to the Centronics specifications. However, printers not designed for MSX can not print the MSX characters and symbols.
(4) Insert the Test ROM cartridge (facing a label side to you) into the slot.
(5) Keep the cassette tape recorder away from the TV (at least 30 cm). Since regular cassette tape recorders are for audio use, some are not suitable for the Self Test due to different audio characteristics.
(4) Testing Procedure

$\begin{aligned} & \text { 哥 } \\ & \text { H } \end{aligned}$				
\#		m	\checkmark	in

$\begin{aligned} & \text { 哥 } \\ & \text { H } \end{aligned}$				
\#		m	\checkmark	in

$\begin{aligned} & \text { 范 } \\ & \text { 最 } \end{aligned}$							
					\％		
\％	σ		\bigcirc		\exists		

	Testing Procedure	CRT Screen displays or Printer prints out	Criteria	Remarks
	Depress SPACE Key.		The overlapped 32 sprites are displayed. If, then, each sprite is moved one by one as shown in the left, it is 0 K .	Sprite check
	Cassette I/0 check Depress SPACE Key.	CRT Screen Displays:	If matched to the left, it is OK. If not, it is NG.	<Important test points> PSG, BUS line CPU-PSG PPI, BUS line CPU-PPI bUS line PPI-Cassette-PSG

Step	Testing Procedure	CRT Screen displays or Printer prints out	Criteria	Remarks
22	Audio output check Depress SPACE Key.	 Octave 2 Octave 4 Octave 6 When the beep sound is outputted, the corresponding indicator turns red.	If the TV is in the state as the followings, it is OK. 1) "do" in the octave 2 beeps from the channel A, " mi " in it beeps from the channel B , and "so" in it beeps from the channel C . 2) "do" in the octave 4 beeps from the channel A, " mi " in it beeps from the channel B , and "so" in it beeps from the channel C . 3) "do" in the octave 6 beeps from the channel $\stackrel{\text { A }}{\text { " }}$ " m 1 " in it beeps from the channel B , and "so" in it beeps from the channel C . 4) When the beep sound is outputted, the corresponding indicator turns red.	<Important test points> PSG, Sound output circuit, terminals, audio cable, CRT Octave check
		CRT Screen Displays:	If the TV is in the state as the followings, it is OK . 1) "do" in the volume 5 beeps from the channel $\stackrel{A}{\mathrm{~A}} \mathrm{~m}$ "mi" in it beeps from the channel B, and "so" in it beeps from the channel C . 2) "do" in the volume 10 beeps from the channel A, " mi " in it beeps from the channel B , and "so" in it beeps from the channel C. 3) "do" in the volume 15 beeps from the channel $\stackrel{\text { A }}{\text { " }}$, "mi" in it beeps from the channel B , and "so" in it beeps from the channel C . 4) When the beep sound is outputted, the corresponding indicator turns red.	Volume check
		 NOISE 11 NOISE 21 NOISE 31 When the sound is outputted, the corresponding indicator turns red.	If the TV is in the state as the followings, it is OK . 1) "noise 11 " sound is outputted from the channels A, B, and C. 2) "noise 21 " sound is outputted from the channels A, B, and C. 3) "noise 31 " sound is outputted from the channels A, B, and C. 4) When the sound is outputted, the corresponding indicator turns red.	"Noise" sound check

Step	Testing Procedure	CRT Screen displays or Printer prints out	Criteria	Remarks
			If the TV is in the state as the followings, it is 0 K . 1) When the sound is outputted, the corresponding indicator turns red. 2) The beeps sound like a crossing bell.	Envelope check
23	Depress SPACE Key.	CRT Screen Displays: Self Test		
24	Turn off the Printer, TV and Computer. Note: When turning the computer on/off, perform it after turning the printer off.			Note: Do not turn on the power immediately after turning off the power. Wait at least 30 seconds after turning off the power before turning it back on.

Disassembly Instruction

Fig. 28

Fig. 29

Ref. No.	Procedure	Shown in Fig.-	To remove-.	Remove-.
1	1	Fig. 28		Screw (3x 6)....... (A) x 3
2	1-2		Top Cabinet	- Cable for the Micro Switches (B)
3	1-3	Fig. 29		Pull the Top Cabinet in the direction of arrow.

- Note:

1) When disconnecting the cable for the Micro Switches from the Connector CN5, remove it, pressing the top of the Connector.
2) When connecting the cable to the Connector CN5, make sure proper connection. (The lead coloured white must be connected to Pin l of the Connector.)

Keyboard

Ref. No.	Procedure	Shown in Fig. -	To remove-.	Remove-.
4	1-5	Fig. 30	Keyboard	Screw (3 x 6)........(A) $\times 2$
5				Pull the Keyboard in the direction of arrow.
6	1-6	Fig. 31		- Remove the cables of the keyboard from the Connector CN8, CN9.

- Note: Care should be taken during connection/disconnection of the cable for the Keyboard. With the both sides of the reinforced portion being held, connect/disconnect them.

Main Board

(A)

Fig. 32 (A)

Ref. No.	Procedure	Shown in Fig.-	To remove-.	Remove-.
7	1-7	Fig. 32	Main Board	Screw (3 x 10) \qquad (A) $\times 5$ Screw (3 x 8) \qquad
8	1-3, 8			- Remove the Socket from the connector, CN1 and CN2.
9	1-9	Fig. 33		Pull the Main Board in the direction of arrow.

- Note: When disconnecting the Socket from the Connector CNl, remove it with the latch being pressed.

Connector, CNI

- Note:

Video Board

1) When disconnecting the cable from the Connector CN 2 , remove it, pressing the top of the Connector CN2.
2) When connecting the cable to the Connector CN2, make sure proper connection.
(The lead coloured white must be connected to Pin 9 of the Connector.)

Fig. 34

Fig. 35

Fig. 36

Ref. No.	Procedure	Shown in Fig.-	To remove-.	Remove-.
10	1-11	Fig. 34	Shield Plate	Screw (3 x 8)........ (A) $\times 1$
11				Pull the Shield Plate in the direction of arrow.
12	1-12	Fig. 35	Video Board	Screw (3×10)....... (B) $\times 2$
13	1-13	Fig. 36		Unlatch the latch of the bottom cabinet. (C) $\times 2$
14	1-14	Fig. 37		Pull the Video Board in the direction of arrow.

- Note: When unlatching, avoid applying excessive force to the latch for the rupture.

Power Source Board

Fig. 38

Ref. No.	Procedure	Shown in Fig.-	To remove-.	Remove-.
15	7-10, 15	Fig. 38	Power Source Board	Screw (3x 8)....... (A) $\times 1$
16	$7-10,15,16$			- Remove the Socket from the Connector, CN101 and CN102.
17	7-11, 15-17			Pull the Power Source Board in the direction of arrow.

- Note: When disconnecting the Socket from the Connector, remove it with the latch being pressed.

CN101

CN102

Fig. 40

Ref. No.	Procedure	Shown in Fig.-	To remove-.	Remove-.
18	1-3, 18, 19	Fig. 39	Micro Switches	Screw (3x 10)....... (A) $\times 1$
19				Micro Switch......... (B) x 2
20	1-3, 18-20		Slot Panel	- Unlatch the latches of the Slot Panel. (C) $\times 4$
21	1-3, 18-21	Fig. 40		Remove the Slot Panel in the direction of arrow (1)
22	1-3, 18-22		Slot Cover	Remove the Slot Cover in the direction of arrow (2)

- Note: Care should be taken during disassembly, so as not to damage the slot panel.
When unlatching, avoid applying excessive force to the latch for rupture.

Adjustment

Channel adjust trimmer

After connecting the TV and computer, turn on the power switch.
Set the TV to UHF channels 35-37. Insert the adjustment screwdriver into the channel adjust trimmer and adjust for a clear picture.

If there is a Spectrul Analyzer, adjustment can be performed precisely. Connect the Spectrul Analyzer to RF output jack of the computer. Then, adjust the channel adjust trimmer as follows.

Channel	Frequency (MHz)
35	583.25
36	591.25
37	599.25

Power Source

Adjust the VRI so that the DC voltage at Pin 45 of the connector CN7 is within 4.97-5.03 V.

Clock Frequency
Connect the clips of the Frequency counter to the Pin 9 of IC203 on Video Board.
Adjust Trimmer Capacitor, CT201, for $4.43361875 \mathrm{MHz} \pm 3 \mathrm{~Hz}$ reading on Frequency Counter.

Connector Pin Connection

General Port 1 and General Port 2 (D-sub 9-pin)				
Signal level TTL level				
Signal Lines List				
Terminal Number	Signal Name	I/0	(Note 1)	(1) (2) (3) (4) (5)
1	FWD	I		
2	BACK	I		
3	LEFT	I		(6) (7) (8) (9)
4	RIGHT	I)
5	+5 V	(Note 2)		
6	TRG 1	I/0	Note 3)	(Front view of the
7	TRG 2	I/0		panel-mounted connector)
8	Output	0		
9	GND	-		

Note 1: Input or output with respect to the computer
Note 2: Load current 50 mA or less
Note 3: I/O is software controlled. To use an input, set bits 0 and 1 (for port 1) or bits 2 and 3 (for port 2) at PSG port B to high level.

Cassette I/O Port (DIN8-pin)
Signal Lines List

Terminal Number	Signal Name
1	GND
2	GND
3	GND
4	CMTOUT
5	CMTIN
6	REM +
7	REM -
8	GND

(Front view of the panel-mounted connector)

Note 1: Input or output with respective to the computer.

Slot 1 and Slot 2
(Card edge type, 50-pin, 2.54 mm pitch)

Signal level TTL level
Signal Lines List (Note 1)

(Note 1)					(Note 1)
Terminal Number	Name	I/0	Terminal Number	Name	I/0
1	$\overline{\text { CS1 }}$	0	2	$\overline{\text { CS2 }}$	0
3	CS12	0	4	SLTSL	0
5	(Note 2)	-	6	RFSH	0
7	WAIT (Note 3)	I	8	INT (Note 3)	I
9	MI	0	10	BUSDIR	I
11	$\overline{\text { IORQ }}$	0	12	$\overline{\text { MERQ }}$	0
13	$\overline{\text { WR }}$	0	14	$\overline{\mathrm{RD}}$	0
15	RESET	0	16	(Note 2)	-
17	A9	0	18	A15	0
19	All	0	20	A10	0
21	A7	0	22	A6	0
23	Al2	0	24	A8	0
25	Al4	0	26	A13	0
27	A1	0	28	A0	0
29	A3	0	30	A2	0
31	A5	0	32	A4	0
33	D1	I/0	34	D0	I/O
35	D3	I/0	36	D2	I/0
37	D5	I/0	38	D4	I/0
39	D7	I/0	40	D6	I/0
41	GND	-	42	CLOCK	0
43	GND	-	44	SW1	-
45	+5 V (Note 4)	-	46	SW2	_
47	+5 V (Note 4)	-	48	+12 V (Note 5)	-
49	SUNDIN	I	50	-12 V (Note 6)	-

Note 1: Input or output with respect to the computer
Note 2: System reserve terminal
Note 3: Be sure to input using an open collector output
Note 4: Load current 300 mA or less
Note 5: Load current 50 mA or less
Note 6: Load current 50 mA or Less
Note 7: Be sure to fully understand the signals before actual
designing a slot connected interface.

Wiring Connection Diagram

Schematic Diagram (Main Board)

Schematic Diagram (Main Board)

Schematic Diagram (Main Board)

Printed Circuit Board (Main Board)

MICRO SWITCH

Schematic Diagram (Video Board)

Printed Circuit Board (Video Board)

Printed Circuit Board (Keyboard)

Keyboard Matrix

Note: When the Keytop is depressed, contacts of both flexible patterns (,) contact each other.

IC Block Diagram

\qquad
(1) DN74LS00
(2) DN74LS02
(3) DN74LS04/RVITC74HC04P
(4) DN74LS08
(5) DN74LS09
(6) DN74LS30
(7) DN74LS32
(8) DN74LS74A
(9) DN74LS86
(10) DN74LS107
(11) DN74LS125A
(12) DN74LS138
(13) DN74LS139
(14) DN74LS145
(15) DN74LS153
(16) DN74LS157
(17) DN74LS245
(18) DN74LS273
(19) DN74LS367A
-Others IC
(20) AN2430
(21) AN6553
(22) AN7812R
(23) AN7912T
(24) DA4164ANL12M
(25) DAAY3-8910AG
(26) MN23257CFH
(27) RVITC40H004P
(28) RVITMS9929AJ
(29) UPC311C
(30) UPD416C-3
(31) UPD780C-1
(32) UPD8255AC-5

EXPlanation of truth tables

The following symbols are now being used in truth tables.
$=$ high level (steady state)
$=$ low level (steady state)
$=$ transition from low to high level
$=$ transition from high to low leve 1
$=$ irrelevant (any input, including transitions)
$=$ off (high-impedance) state of a 3 -state output
a..h $=$ the level of steady-state inputs at inputs A through H respectively
$Q_{0}=1$ evel of Q before the indicated steady-state input conditions were established
$\bar{Q}_{0}=$ complement of Q_{0} or level of \bar{Q} before the indicated
steady-state input conditions were established
$Q_{n}=\begin{aligned} & \text { level of } Q \text { before the most recent active transition } \\ & \text { 1ndicated by } \downarrow \text { or } t\end{aligned}$
$\Omega=$ one high-1evel pulse
= one low-level pulse

(10) DN74LS107						
$V_{C C}$ 1CLR 1CK 2 K 2 CLR 2CK 2 J	truth table					
[14 13 12 $11 \times 10{ }^{\text {a }}$	INPUTS				OUTPUTS	
$\xrightarrow{\square}$	CLR	CLK	J	K	Q	$\overline{\mathrm{Q}}$
	L	X	X	X	L	H
	H	Ω	L	L	Q0	\bar{Q}_{0}
$\xrightarrow[\square]{\text { Q Q }}$	H	Ω	H	L	H	L
1)	H	Ω	L	H	L	H
	H	Ω	H	H		
1J $1 \bar{Q} \quad 1 Q \quad 1 \mathrm{~K}$	X = irre	evant				

(11) DN74LS125A

Positive logic : $Y=A \quad$ Output is off (disabled) when $\overline{\mathrm{OC}}$ is high
(12) DN74LS138

	$\begin{aligned} & \text { UTH } \\ & \hline N \end{aligned}$	PUT	S									
			LEC					UTP	UTS			
E_{1}	Ex	DC	$\mathrm{DB}^{\text {}}$	DA	$\overline{\mathrm{Y}}$	\bar{Y}	\bar{Y}	\bar{Y}	Y_{4}	Y5	Y6	Y
X	H	x	x	\times	H	H	H	H	H	H	H	H
L	X	x	x	X	H	H	H	H	H	H	H	H
H	L	L	L	L	L	H	H	H	H	H	H	H
H	L	L	L	H	H	L	H	H	H	H	H	H
H	L	L	H	L	H	H	L	H	H	H	H	H
H	L	L	H	H	H	H	H	L	H	H	H	H
H	L	H	L	L	H	H	H	H	L	H	H	H
H	L	H	L	H	H	H	H	H	H	L	H	H
H	L	H	H	L	H	H	H	H	H	H	L	H
H	L	H	H	H	H	H	H	H	H	H	H	L
$\overline{E_{x}}=\bar{E}_{2}+\overline{E_{3}}$												

-60-

-61-

Parts Location

Parts Location (Keyboard)

Packing Instruction

Replacement Parts List
Notes: 1. Parts Name and Location.
Components identified by mark have special characteristics important for safety. When replacing any of these components, use only manufacturer s specified parts.
2. The S mark indicates service standard parts and may differ from production parts.

Ref. No.	Part No.	Part Name \& Description	$\begin{array}{\|c\|} \hline \text { Per } \\ \text { Set } \\ \hline \end{array}$	Ref. No.	Part No.	Part Name \& Description	$\begin{array}{\|c\|} \hline \text { Per } \\ \text { Set } \\ \hline \end{array}$
MAIN P.C. BOARD BLOCK				IC20	DN74LS00	IC, QUADRUPLE NAND GATES	1
IC1	AN7812R	IC, REGULATOR	1	IC21 IC22	DN74LS125A	IC, RESET BUFFER IC, QUADRUPLE AND GATES	1
IC2	AN7912T	IC, REGULATOR	1	IC23	DN74LS139	IC, DECODER, SLOT	1
IC3	DN74LS273	IC, data latch	1	IC24	DN74LS157	IC, MULTIPLEXER, DRAM	1
IC4	DN74LS32	IC, QUADRUPLE OR GATES	1	IC25	DN74LS138	IC, MULTIPLEXER, I/O SELECT	1
IC5	DN74LS245	IC, DATA BUS buFFER	1	IC26	DN74LS367A	IC, ADDRESS CLOCK BUFFER	1
IC6	DN74LS74A	IC, RAS		IC27	DN74LS367A	IC, CPU CONTROL BUFFER	1
IC7	DN74LS74A	IC, ADRESS CHANGER	,	IC28	DN74LS157	IC, MULTIPLEXER, PSG	1
IC8	UPD780C-1	IC, CPU	1	IC29	DN74LS157	IC, MULTIPLEXER, DRAM	1
IC9	DN74LS32	IC, QUADRUPLE OR GATES		IC30	DN74LS04	IC, INVERTERS	1
IC10	DN74LS153	IC, DATA SELECTOR, Slot		IC31	DN74LS30	IC, POSITIVE NAND GATES	1
ICII	DA4164ANL 12 M	IC, DYNAMIC RAM	1	IC32	MN23257CFH	IC, MASK ROM	1
IC12	DA4164ANL12M	IC, DYNAMIC RAM	1	IC33	DN74LS157	IC, MULTIPLEXER, PSG	1
IC13	DA4164ANLI2M	IC, DYNAMIC RAM	1	IC34	AN6553	IC, OP AMP	1
IC14	DA4164ANL12M	IC, DYNAMIC RAM	1	IC35	DN74LS08	IC, QUADRUPLE AND GATES	1
IC15	DA4164ANL12M	IC, DYNAMIC RAM	1	IC36	DAAY3-8910A	IC, PSG (PROGRAMMABLE SOUND	1
IC16	DA4164ANL12M	IC, DYNAMIC RAM	1			GENERATOR)	
IC17	DA4164ANL 12 M	IC, DYNAMIC RAM	1	IC37	DN74LS09	IC, OPEN COLLECTOR GATES	1
IC18	DA4164ANL12M	IC, DYNAMIC RAM	1	IC38	RVITMS9929AJ	IC, VDP (VIDEO display Processor)	1
IC19	DN74LS74A	IC, WRITE SIGNaL generator	1	IC39	DN74LS74A	IC, FREQUENCY DIVIDER	1

Ref. No.	. Part No.	Part Name \& Description	$\begin{array}{\|c\|} \hline \text { Per } \\ \text { Set } \\ \hline \end{array}$	Ref. No.	Part No.	Part Name \& Description	$\begin{array}{\|c\|} \hline \text { Per } \\ \text { Set } \\ \hline \end{array}$
IC40	DN74LS09	IC, OPEN COLlector gates	1	R29	ERDS2TJ271	Registor 270 ohms	1
IC41	UPC311C	IC, CONPARATOR	1	R30	ERDS2TJ392	Registor 3.9 K ohms	1
IC42	DN74LS74A	IC, FREQUENCY DIVIDER	1	R31	ERDS2TJ471	Registor 470 ohms	1
IC43	RVITC74HC04P	IC, OSCILLATOR	1	R32	ERDS2TJ 220	Registor 22 ohms	1
IC44	DN74LS32	IC, QUADRUPLE OR GATES	1	R33	ERDS2TJ562	Registor 5.6 K ohms	1
IC45	UPD8255AC-5	IC, PPI (PROGRAMMABLE PERIPHERAL	1	R34	ERDS2TJ103	Registor 10K ohms	1
		INTERFACE)		R35	ERDS2TJ562	Registor 5.6 K ohms	1
IC46	DN74LS145	IC, KEYBOARD INTERFACE	1	R36	ERDS2TJ681	Registor 680 ohms	1
IC47	DN74LS107	IC, FREQUENCY DIVIDER	1	R37	ERDS2TJ563	Registor 56K ohms	1
IC48	DN74LS02	IC, quadruple nor gates	1	R38	ERDS2TJ273	Registor 27K ohms	1
IC49	UPD416C-3	IC, VIDEO RAM	1	R39	ERDS2TJ220	Registor 22 ohms	1
IC50	UPD416C-3	IC, VIDEO RAM	1	R40	ERDS2TJ102	Registor 1K ohms	1
IC51	UPD416C-3	IC, VIDEO RAM	1	R41	ERDS2TJ220	Registor 22 ohms	1
IC52	UPD416C-3	IC, VIDEO RAM	1	R42	ERDS2TJ220	Registor 22 ohms	1
$1 \mathrm{IC53}$	UPD416C-3	IC, VIDEO RAM	1	R43	ERDS2TJ472	Registor 4.7K ohms	1
IC54	UPD416C-3	IC, VIDEO RAM	1	R44	ERDS2TJ220	Registor 22 ohms	1
IC55	UPD416C-3	IC, VIDEO RAM	1	R45	ERDS2TJ183	Registor 18 K ohms	1
IC56	UPD $416 \mathrm{C}-3$	IC, VIDEO RAM	1	R46	ERDS2TJ220	Registor 22 ohms	1
Q1	2SA1061P	Transistor	1	R47	ERDS2TJ220	Registor 22 ohms	1
Q2	2SA722-S	Transistor	1	R48	ERDS2TJ220	Registor 22 ohms	1
Q3	2SC829-B	Transistor	1	R49 R50	ERDS2TJ220	Registor 22 ohms	1
Q4	2SC829-B	Transistor	1	R51	ERDS2TJ220	Registor 22 ohms Registor 5.6 K ohms	1
Q5	$2 \mathrm{SC} 829-\mathrm{B}$	Transistor	1	R52	ERDS2TJ680	Registor 5.6 K ohms Registor 68 ohms	1
Q6	2SC1685-Q	Transistor	1	R53	ERDS2TJ103	Registor Registor 10 K ohms	1
Q7	2SC1318-Q	Transistor	1	R54	ERDS2TJ102	Registor 1K ohms	1
Q8	2SA722-S	Transistor	1	R55	ERDS2TJ224	Registor 220 K ohms	1
Q9	2SC1685-Q	Transistor	1	R56	ERDS2TJ222	Registor 2.2 K ohms	1
Q10	2SC829-B	Transistor	1	R57	ERDS2TJ472	Registor 4.7K ohms	1
Q11	2SC1685-Q	Transistor	1	R58	ERDS2TJ222	Registor 2.2 K ohms	1
D1	MA165	Diode	1	R59	ERDS2TJ103	Registor 10K ohms	1
D2	OA91LF	Diode	1	R61	ERDS2TJ105	Registor 1M ohms	1
D3	FBM-032-009	Diode	1	R62	ERDS2TJ103	Registor 10K ohms	1
D4	FBM-032-009	Diode	1	R63	ERDS2TJ680	Registor 68 ohms	1
D5	FBM-032-009	Diode	1	R64	ERD25TJ102	Registor 1 K ohms	1
D6	FBM-032-009	Diode	1	R65	ERDS2TJ222	Registor 2.2 K ohms	1
D7	DEDS3V20F4	Diode	1	R66	ERDS2TJ222	Registor 2.2 K ohms	1
D8	DEDS3V20F4	Diode	1	R67	ERDS2TJ222	Registor 2.2 K ohms	1
D9	MA165	Diode	1	R68	ERDS2TJ472	Registor 4.7K ohms	1
D10	MA165	Diode	1	R69	ERDS2TJ223	Registor 22 K ohms	1
D11	MA345B	Diode	1	R70	ERDS2TJ472	Registor 4.7 K ohms	
D12	0A95	Diode	1	R71	ERDS2TJ472	Registor 4.7K ohms	1
D13	0A95	Diode	1	R72	ERDS2TJ182	Registor 1.8 K ohms	1
D14	0A95	Diode	1	R73	ERDS2TJ104	Registor 100K ohms	1
D15	MA165	Diode	1	R74	ERDS2TJ103	Registor 10K ohms	,
				R75	ERDS2TJ220	Registor 22 ohms	
X1	DECA10678K1M	Crystal	1	R76	ERDS2TJ220	Registor 22 ohms	1
				R77	ERDS2TJ220	Registor 22 ohms	1
RY1	FBM-450-004	Relay	1	R80	ERDS2TJ103	Registor l0K ohms	1
RA1	EXBP 87103 J	Component Combination	1	Cl^{1}	ECEAIHV010	Capacitor $1 \mu \mathrm{~F}$	1
RA2	EXBP87103J	Component Combination	1	C2	ECFF1E1042F	Capacitor $0.1 \mu \mathrm{~F}$	1
RA3	EXBP88103J	Component Combination	1	C3	ECCFIH680JC	Capacitor 68 pF	1
RA4	EXBP 88223J	Component Combination	1	C4	ECCFIH680JC	Capacitor 68 pF	1
				C5	ECCF1H680JC	Capacitor 68 pF	1
VRI	DENC1B222	Variable Registor volume	1	C6	ECEAlEU102	Capacitor $1000 \mu \mathrm{~F}$	1
				C7	ECEA1CU331	Capacitor $330 \mu \mathrm{~F}$	1
R1	ERDS2TJ102	Registor 1K ohms	1	C8	ECQV1H393JZ	Capacitor $0.039 \mu \mathrm{~F}$	1
R2	ERDS2TJ102	Registor 1K ohms	1	C9	ECQV1H103JZ	Capacitor $0.01 \mu \mathrm{~F}$	1
R3	ERG1SJ680P	Registor 68 ohms	1	C10	ECEALEU472	Capacitor $4700 \mu \mathrm{~F}$	1
R4	ERDS2TJ472	Registor 4.7K ohms	1	C11	ECEA1CU682	Capacitor $6800 \mu \mathrm{~F}$	1
R5	ERDS2TJ153	Registor 15 K ohms	1	C12	ECEA1CU101	Capacitor $100 \mu \mathrm{~F}$	1
R6	ERDS2TJ122	Registor 1.2K ohms	1	C13	ECEA1AU220	Capacitor $22 \mu \mathrm{~F}$	1
R7	ERDS2TJ122	Registor 1.2K ohms	1	C14	ECFF1E104ZF	Capacitor $0.1 \mu \mathrm{~F}$	1
R8	ERDS2TJ122	Registor 1.2K ohms	1	C15	ECFF1E104ZF	Capacitor $0.1 \mu \mathrm{~F}$	1
R9	ERDS2TJ561	Registor 560 ohms	1	C16	ECFFlE104ZF	Capacitor $0.1 \mu \mathrm{~F}$	1
R10 R11	ERDS2TJ471	Registor 470 ohms Registor 4.7 K ohms	1	${ }^{C 17}$	ECFF1E1042F	Capacitor $0.1 \mu \mathrm{~F}$	1
R12	ERDS2TJ562	Registor Registor 5.6 K ohms	1	C18	ECEA1AU331	Capacitor $330 \mu \mathrm{~F}$ Capacitor $100 \mu \mathrm{~F}$	1
R13	ERDS2TJ471	Registor 470 ohms	1	C20	ECSF1AE 225	Capacitor 22 HF	1
R14	ERDS2TJ561	Registor 560 ohms	1	C21	ECFFIE1042F	Capacitor $0.1 \mu \mathrm{~F}$	1
R15	ERDS2TJ471	Registor 470 ohms	1	C22	ECFFIE1042F	Capacitor $0.1 \mu \mathrm{~F}$	1
R16	ERDS2TJ561	Registor 560 ohms	1	C23	ECFFIE104ZF	Capacitor $0.1 \mu \mathrm{~F}$	1
R18	ERDS2TJ101	Registor 100 ohms	1	C24	ECEALAU101	Capacitor $100 \mu \mathrm{~F}$	1
R19 R20	ERDS2TJ472	Registor 4.7 K ohms Registor 2.2 K ohms	1	C25	ECFFIE104ZF	Capacitor $0.1 \mu \mathrm{~F}$	1
R21	ERDS2TJ222	Registor 2.2K ohms	1	C26	ECFFIE104ZF	$\begin{array}{lll}\text { Capacitor } & 0.1 & \mu \mathrm{~F} \\ \text { Capacitor } & 0.1\end{array}$	1
R22	ERD50TJ151	Registor 150 ohms	1	C28	ECSF1EE226	Capacitor $220 \mu \mathrm{~F}$	1
R24	ERG1AN471U	Registor 470 ohms	1	C29	ECFFIE1042F	Capacitor $0.1 \mu \mathrm{~F}$	1
R25	ERDS2TJ100	Registor 10 ohms	1	C30	ECFF1E104ZF	Capacitor $0.1 \mu \mathrm{~F}$	1
R26 R27	ERDS2TJ183	Registor 18 K ohms Registor 22 ohms	1	C31	ECFF1E104ZF	Capacitor 0.1 Capacitor 2200 F	1
R28	ERDS2TJ562	Registor 5.6 K ohms	1	C32	ECKD1H222KB	Capacitor 2200 pF	1

Ref. No.	Part No.	Part Name \& Description	$\begin{aligned} & \text { Per } \\ & \text { Set } \\ & \hline \end{aligned}$	Ref. No.	Part No.	Part Name \& Description	Per Set
C33	ECFF1E104ZF	Capacitor $0.1 \mu \mathrm{~F}$	1	Q203	2SC2647B	Transistor	1
C34	ECFFIE1042F	Capacitor $0.1 \mu \mathrm{~F}$	1	Q204	2SB6410	Transistor	1
C35	ECKDIH221KB	Capacitor 220 pF					
C36	ECFF1E104ZF	Capacitor $0.1 \mu \mathrm{~F}$	1	D201	MA165	Diode	1
C37	ECFFIEI04ZF	Capacitor $0.1 \mu \mathrm{~F}$	1	D202	MA165	Diode	1
C38	ECEALHU3R3	Capacitor 3.3 $\mu \mathrm{F}$	1	D203	MA165	Diode	1
C39	ECFFIE1042F	Capacitor $0.1 \mu \mathrm{~F}$	1	D204	MA165	Diode	1
C40	ECFF1E104ZF	Capacitor $0.1 \mu \mathrm{~F}$	1	D205	MA165	Diode	1
C41	ECFFIE1042F	Capacitor $0.1 \mu \mathrm{~F}$	1				
C42	ECFFIE1042F	Capacitor $0.1 \mu \mathrm{~F}$	1	X201	DECA08867H1M	Crystal	1
C44	ECQV1H222J2	Capacitor $0.0022 \mu \mathrm{~F}$	1				
C45	ECQVIH104JZ	Capacitor $0.1 \mu \mathrm{~F}$	1	L201	ELEMY 390KA	Coil	1
C46	ECFF1E104ZF	Capacitor $0.1 \mu \mathrm{~F}$	1	L202	ELEMY 390KA	Coil	1
C47	ECFFIE1042F	Capacitor $0.1 \mu \mathrm{~F}$	1	L203	ELEMY 390KA	Coil	1
C48	ECCDIH330KC	Capacitor 33 pF	1	L204	ELEMY 390KA	Coil	1
C49	ECFF1E1042F	Capacitor $0.1 \mu \mathrm{~F}$	1				
C50	ECFFIE1042F	Capacitor $0.1 \mu \mathrm{~F}$	1	R201	ERDS2TJ564	Resistor 560 K ohms	1
C51	ECFFIE1042F	Capacitor $0.1 \mu \mathrm{~F}$	1	R202	ERDS2TJ562	Resistor 5.6K ohms	1
C52	ECSF1AE225	Capacitor $22 \mu \mathrm{~F}$	1	R203	ERDS2TJ 101	Resistor 100 ohms	1
C53	ECFFIE104ZF	Capacitor $0.1 \mu \mathrm{~F}$	1	R204	ERDS2TJ102	Resistor 1K ohms	1
C54	ECFF1E1042F	Capacitor $0.1 \mu \mathrm{~F}$	1	R205	ERDS2TJ 393	Resistor 39 K ohms	1
C55	ECSF1AE225	Capacitor $22 \mu \mathrm{~F}$	1	R206	ERDS2TJ822	Resistor 8.2 K ohms	1
C56	ECFFIE1042F	Capacitor $0.1 \mu \mathrm{~F}$	1	R207	ERDS2TJ122	Resistor 1.2K ohms	1
C57	ECFF1E104ZF	Capacitor $0.1 \mu \mathrm{~F}$	1	R208	ERDS2TJ561	Resistor 560 ohms	1
C58	ECFFIE104ZF	Capacitor $0.1 \mu \mathrm{~F}$	1	R209	ERDS2TJ102	Resistor 1 K ohms	1
C59	ECFF1E104ZF	Capacitor $0.1 \mu \mathrm{~F}$	1	R210	ERDS2TJ822	Resistor 8.2 K ohms	1
C60	ECFFIE104ZF	Capacitor $0.1 \mu \mathrm{~F}$	1	R211	ERDS2TJ102	Resistor 1K ohms	1
C61	ECFFIE104ZF	Capacitor $0.1 \mu \mathrm{~F}$	1	R212	ERDS2TJ822	Resistor 8.2K ohns	1
C62	ECFFIE104ZF	Capacitor $0.1 \mu \mathrm{~F}$	1	R213	ERDS2TJ105	Resistor 1M ohms	1
C63	ECFFlE104ZF	Capacitor $0.1 \mu \mathrm{~F}$	1	R215	ERDS2TJ103	Resistor 10K ohms	1
C64	ECEALCU100	Capacitor $10 \mu \mathrm{~F}$	1	R216	ERDS2TJ 393	Resistor 39K ohms	1
C65	ECFF1E104ZF	Capacitor $0.1 \mu \mathrm{~F}$	1	R217	ERDS2TJ103	Resistor 10 K ohms	1
C66	ECFFIE104ZF	Capacitor $0.1 \mu \mathrm{~F}$	1	R218	ERDS2TJ104	Resistor 100 K ohms	1
C67	ECFFIE1042F	Capacitor $0.1 \mu \mathrm{~F}$	1	R219	ERD25TJ271	Resistor 270 ohms	1
C68	ECCF1H680JC	Capacitor 68 pF	1	R220	ERDS2TJ102	Resistor 1 K ohms	1
C69	ECFF1E104ZF	Capacitor 0.1 $\mu \mathrm{F}$	1	R221	ERDS2TJ123	Resistor 12 K ohms	1
C70	ECCFIHIS1JC	Capacitor 150 pF	1	R222	ERDS2TJ103	Resistor 10K ohms	1
C71	ECEALAU101	Capacitor $100 \mu \mathrm{~F}$	1	R223	ERDS2TJ102	Resistor 1K ohms	1
C72	ECEALAUI01	Capacitor $100 \mu \mathrm{~F}$	1	R224	ERDS2TJ471	Resistor 47 ohms	1
C73	ECEA1AU101	Capacitor $100 \mu \mathrm{~F}$	1	R225	ERDS2TJ151	Resistor 150 ohms	1
C74	ECEALAU101	Capacitor $100 \mu \mathrm{~F}$	1	R226	ERD25TJ221	Resistor 220 ohms	1
C75	ECFF1E104ZF	Capacitor $0.1 \mu \mathrm{~F}$	1	R227	ERDS2TJ680	Resistor 68 ohms	1
C76	ECFFIE104ZF	Capacitor $0.1 \mu \mathrm{~F}$	1	R229	ERDS2TJ102	Resistor 1 K ohms	1
C77	ECFFIE104ZF	Capacitor $0.1 \mu \mathrm{~F}$	1	R230	ERDS2TJ102	Resistor 1K ohms	1
C78	ECFFlE104ZF	Capacitor $0.1 \mu \mathrm{~F}$	1	R231	ERDS2TJ221	Resistor 220 ohms	1
C79	ECFFIE104ZF	Capacitor $0.1 \mu \mathrm{~F}$	1	R232	ERD25TJ101	Resistor 100 ohms	1
C80	ECFFIE1042F	Capacitor 0.1 $\mu \mathrm{F}$	1	R233	ERD25TJ102	Resistor 1 K ohms	1
C81	ECFFIE104ZF	Capacitor $0.1 \mu \mathrm{~F}$	1	R234	ERD25TJ272	Resistor 2.7K ohms	1
C82	ECFF1E104ZF	Capacitor $0.1 \mu \mathrm{~F}$	1	R235	ERD25TJ473	Resistor 47K ohms	1
C83	ECEALCU472	Capacitor $4700 \mu \mathrm{~F}$	1				
E1	DFJP5G12	Connector, CN1	1	Cr201	ECRH020D11	Trimmer	1
E2	DFJS9H1z	Connector, CN2	1				
E3	DFJS08J012	Connector, CN3	1	C201	ECEAICU100	Capacitor $10 \mu \mathrm{~F}$	1
E4	FBM-403-075	Connector, CN4	1	C202	ECEAICU100	Capacitor $10 \mu \mathrm{~F}$	1
E5	DFJS 3H1Z	Connector, CN5	1	C203	ECEALHUR47	Capacitor $0.47 \mu \mathrm{~F}$	1
E6	EMCAD05001A1	Connector, CN6, CN7	2	C204	ECQV1H103JZ	Capacitor $0.01 \mu \mathrm{~F}$	1
E7	DFJS15H1Z	Connector, CN8	1	C205	ECEA1CU100	Capacitor $10 \mu \mathrm{~F}$	1
E8	DFJS8H1z	Connector, CN9	1	C206	ECEALAU470	Capacitor $47 \mu \mathrm{~F}$	1
E9	FBM-403-052	Connector, PTl, PT2	2	C207	ecealau470	Capacitor $47 \mu \mathrm{~F}$	1
E10	DFUS00012	Spring	1	C208	ECEAICUIO0	Capacitor $10 \mu \mathrm{~F}$	1
E11	FBM-415-010	Fuse Holder	2	C209	ECQVIH103JZ	Capacitor $0.01 \mu \mathrm{~F}$	1
E12	XBAD31501	Fuse	1	C210	ECEA1HUR47	Capacitor $0.47 \mu \mathrm{~F}$	1
E13	DFMC00052	Shield Case, VDP	1	C211	ECCDIH220KC	Capacitor 22 pF	1
E14	DFFMY005z	Heat Sink	1	C212	ECCDIH100KC	Capacitor 10 pF	1
E15	DFMC00092	Cover, Shield Case	4	C213	ECCDIH270KC	Capacitor 27 pF	1
E16	XSN3+12S	Screw	4	C214	ECCDIH330KC	Capacitor 33 pF	1
E17	XWA3B	Washer	6	C215	ECEAICU100	Capacitor 10 \%	1
E18	XNG3ES	Nut	4	C216	ECCFIH330KC	Capacitor 33 pF	1
E19	XSN3+10S	Screw	2	C217	ECEA1CU100	Capacitor $10 \mu \mathrm{~F}$	1
E20	XWG3	Washer	2	C218	ECEALCU471	Capacitor $470 \mu \mathrm{~F}$	1
E21	DDB6M001L-F	Ferrite bead	9	C219	ECFFIE1042F	Capacitor $0.1 \mu \mathrm{~F}$	1
VIDEO P.C.Board Block				C220	ECEAOJU102	Capacitor $1000 \mu \mathrm{~F}$	1
				C221	ECFFIE104ZF	Capacitor $0.1 \mu \mathrm{~F}$	1
IC201	RVITC4OH004P	IC, OSCILLATOR	1	C222	ECCDIH020KC	Capacitor 2 pF Capacitor 33 pF	1
IC202	AN2430	IC, ENCODER	1	C224	ECEALAUIO1	Capacitor $100 \mu \mathrm{~F}$	1
IC203	DN74LS74A	IC, FREQUENCY DIVIDER	1	C225	ECEAICU100	Capacitor $10 \mu \mathrm{~F}$	1
IC204	DN74LS74A	IC, FREQUENCY DIVIDER	1	C226	ECFFIE104ZF	Capacitor $0.1 \mu \mathrm{~F}$	1
IC205	DN74LS86	IC, QUADRUPLE OR GATES	1				
				E22	DFJE0022	Flat Cable	1
Q201	2SB641Q	Transistor	1	E23	DFUL0005Z	Reinforcement Board	1
Q202	2SC2647B	Transistor	1	E24	DFMC0006Z	Shield Plate	1

-66-

Ref. No.	Part No.	Part Name \& Description	$\begin{gathered} \hline \text { Per } \\ \text { Set } \end{gathered}$
E25	DFJF1A001Z	Pin Jack, VIDEO	1
E26	DFJF1A002Z	Pin Jack, SOUND	1
E27	DFSD0022	RF Modulater	1
Power Source Block			
T101	DDT5M7E012	Transformer	1
2101	DDASCO210V	Coil	1
SW101	EST15802B	Power Switch	1
Cl01	ECQE2A104M	Capacitor $0.1 \mu \mathrm{~F}$	1
C102	ECQE2A104M	Capacitor $0.1 \mu \mathrm{~F}$	1
E28	DFJP02G12	Connector, CN101	1
E29	DFJP02G22	Connector, CN102	1
E30	DFJA03z	AC Cord	1
E31	DFJS2G12	Connector	1
E32	DFJT4012	Contact	2
E33	DFUV00032	Switch Cap	1
E34	RHR9932	Band	1
E35	DFMD003Z	Attachment stand	1
E36	DFJP02G2Z	Fuse Holder	2
E37	XBAD01601	Fuse	1
E38	XTV3+8BFN	Screw	2
E39	XTN3+8B	Screw	4
E40	XWG3	Washer	4

Keyboard Block

D301	LN220RP	LED, Power	1
D302	LN88RCPP	LED, (1)	1
1	DFWV70C0001	Rey Button F6 F6	1
2	DFWV70C0002	Key Button ${ }^{\text {F3 }}{ }^{\text {F2 }} 7$	1
3	DFWV70C0003	Key Button ${ }_{\text {F3 }}{ }^{\text {F4 }}$	1
4	DFWV70C0004	Key Button F5 F9	1
5	DFWV70C0005	Key Button ${ }_{\text {F10 }}$	1
6	DFWV70C0006	Key Button STOP	1
7	DFWV70C0007	Key Button HOME	1
8	DFWV70C0008	Key Button SELECT	1
9	DFWV70C0009	Key Button INS	1
10	DFWV70C0010	Key Button DEL	1
11	DFWV70C0011	Key Button ESC	1
12	DFWV70C0012	Key Button ! 1	1
13	DFWV70C0013	Key Button © ${ }_{2}$	1
14	DFWV70C0014	Key Button \#3	1
15	DFWV70C0015	Key Button \$ 4	1
16	DFWV70C0016	Key Button \% 5	1
17	DFWV70C0017	Key Button * 6	1
18	DFWV70C0018	Key Button \otimes^{7}	1
19	DFWV70C0019	Key Button * 8	1
20	DFWV70C0020	Key Button (9	1
21	DFWV70C0021	Key Button) ${ }_{0}$	
22	DFWV70C0022	Key Button =	
23	DFWV70C0023	Key Button \pm	1
24	DFWV70C0024	Key Button $\overline{\text { \% } /}$	1
25	DFWV70C0025	Key Button <	1
26	DFWV70C0026	Key Button TAB	1
27	DFWV70C0027	Key Button Q	1
28	DFWV70C0028	Key Button W	1
29	DFWV70C0029	Key Button E	1
30	DFWV70C0030	Key Button R	1
31	DFWV70C0031	Key Button T	1
32	DFWV70C0032	Key Button Y	1
33	DFWV70C0033	Key Button U	1
34	DFWV70C0034	Key Button I	1
35	DFWV70C0035	Key Button 0	1
36	DFWV70C0036	Key Button P	1
37	DFWV70C0037	Key Button	1
38	DFWV70C0038	Key Button	1
39	DFWV70C0039	Key Button CTRL	1
40	DFWV70C0040	Key Button A	1
41	DFWV70C0041	Key Button S	
42	DFWV70C0042	Key Button D	1
43	DFWV70C0043	Key Button F	1
44	DFWV70C0044	Key Button G	1
45	DFWV70C0045	Key Button H	1
46	DFWV70C0046	Key Button J	1
47	DFWV70C0047	Key Button K	,
48	DFWV70C0048	Key Button L	1

Ref. No.	Part No.	Part Name \& Description	Per Set
49	DFWV70C0049	Key Button ;	1
50	DFWV70C0050	Key Button '\%	1
51	DFWV70C0051	Key Button ${ }_{\text {E }}^{\text {E }}$	1
52	DFWV70C0052	Key Button	1
53	DFWV70C0053	Key Button 介	1
54	DFWV70C0054	Key Button Z	1
55	DFWV70C0055	Key Button X	1
56	DFWV70C0056	Key Button C	1
57	DFWV70C0057	Key Button V	1
58	DFWV7000058	Key Button B	1
59	DFWV70C0059	Key Button N	1
60	DFWV70C0060	Key Button M	1
61	DFWV7000060	Key Button ,	1
62	DFWV70C0062	Key Button ?	1
63	DFWV7000063	Key Button ?	1
64	DFWV70C0064	Key Button :	1
65	DFWV7000065	Key Button is	1
66	DFWV7000066	Key Button (4)	1
67	DFWV70C0067	Key Button graph	1
68	DFWV70C0068	Key Button SPACE	1
69	DFWV70C0069	Key Button CODE	1
70	DFWV70C0070	Key Button	1
71	DFWV70c0071	Key Button >	1
72	DFWV70C0072	Key Button	1
73	DFWV7000073	Key Button V	1
E41	DFWV48A0008	Flexible Pattern Ass'y	1
E42	FBM-652-K20	Switch Unit A, B, C etc.	55
E43	FBM-652-K21	Switch Unit CURSOR	4
E44	FBM-652-K23	Switch Unit SPACE	1
E45	FBM-652-K24	Switch Unit (4)	1
E46	FBM-652-K26	Switch Unit 0 (left side)	1
E47	FBM-652-K25	Switch Unit	1
E48	FBM-652-K22	Switch Unit FUNCTION	10
E49	FBM-652-K22	Switch Unit SPACE (both ends)	2
E50	FBM-717-023	Arm, SPACE	1
E51	FBM-717-022	Arm, 讴	2
E52	FBM-652-146	Installation Board, SPACE	2
E53	FBM-653-034	LED Contact	2
E54	DFWV65C0005	LED Holder	2
Cabinet Block			
K1	DFKE00022	Slot Cover	2
K2	FBM-728-011	Slot Spring	2
K3	DFKM00042	Upper Cabinet	1
K4	DFGP00022	Slot Pannel	1
K5	FBM-438-008	Micro Switch	2
K6	DFMD00012	Pressure Board	1
K7	DFDF30012	Support Shaft	1
K8	FBM-845-033	Connector Cover, CN4	1
K9	DFUV0004Z	Connector Cover, PT1, PT2	1
K10	DFWV80C0006	Bottom Cabinet Ass'y	1
K11	DFMC00042	RF Shield Plate	1
K12	DFMC00032	Bottom Shield Plate	1
K13	DFMY003Z	Heat Sink	1
K16	XTN3+10B	Screw	14
K17	XWG3	Washer	15
K18	XTV3+16BFZ	Screw	3
K19	XTN3+8BFN	Screw	2
K20	XTN3+6B	Screw	
K21	XTN3+6S	Screw	,
K22	XWA3B	Spring Washer	
Accessories			
K23	DFJP00Z012	Cable, CASSETTE	1
K24	FBM-497-022	Cable, SOUND	1
K25	DFJPOE012	Cable, RF	1
K26	DFJPOE022	Cable, VIDEO	1
K27	DFPK00212	Packing Case	1
K28	DFPP00012	Wrap, Set	1
K29	DFQA17022	Graphic Labels	1
K30	DFPN0001z	Insulation Material, Right Side	1
K31	DFPNOOO22	Insulation Material, Left Side	,
K32	QPC0072	AC Cord Cover	1
K33	DFQX2004z	BASIC Manual	1
K34	DFQX5003Z	Instruction Manual	1

