## HBD-50



## SONY.

SERVICE MANUAL
Scanned and converted to PDF by MSXHans, 2001

## TABLE OF CONTENTS

## 1. OPERATION

1-1. FEATURES .......................................... 1-1
1-2. SPECIFICATIONS ..................................... 1-1
1-3. PARTS IDENTIFICATION ......................... . . 1-1
1-3-1. Drive Unit......................................... 1-1
1-3-2. Interface Cartridge ............................... 1-1
1-4. CONNECTING THE UNIT ........................ 1-2
1-5. INSERTING A DISK ............................................
1-6. STARTING UP MSX-DISK BASIC ............... 1-2
1-7. FORMATTING A BLANK DISK .................... 1-3
1-8. PIN ASSIGNMENT OF THE CONNECTORS ..... 1-3
2. SERVICE INFORMATION

2-1. CAUTION AND OTHER INFORMATION ......... 2-1
2-2 DISASSEMBLY .................................... 2-1
2-2-1. Disassembly of Case, Panel and Plate ...... 2-1
2-2-2. Disassembly of FDC Board .................. . 2-1
2-2-3. Disassembly of Drive Ass'y ................... 2-2
2-3. REPAIR PARTS ..................................... 2-2

## 3. THEORY OF OPERATION

| 3-1. | FDI |
| :---: | :---: |
| 3-1-1. | Memory Map |
| 3-1-2. | Selection by FDI Cartridge |
| 3-1-3. | Selection by FDC Controller |
| 3-2. | FDC |
| 3-2-1. | Memory Map Det |
| 3-2-2. | Selection of Individual FDC (IC1) Registers |
| 3-2-3. | Operation of Individual Registers |

## 4. BLOCK DIAGRAM

OVERALL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
SEMICONDUCTOR PIN ASSIGNMENTS . . . . . . 4 4-3
5. SCHEMATIC DIAGRAM AND PRINTED CIRCUIT BOARD

, POWER, TR(A). TR(B) BOARD
5-1

FDI BOARD ..... 5-2

FDC BOARD
5-5
6. TROUBLESHOOTING

| 6-1. | PREPARATION | 6-1 |
| :---: | :---: | :---: |
| 6-1-1 | Test Programs | 6-1 |
| 6-2. | DISK MOTOR "ON" CHECKS | 6-2 |
| 6-2-1 | When Motor will not Rotate | 6-3 |
| 6-3. | STATUS CHECKS | 6-4 |
| 6-4. | SEEK CHECKS | 6-5 |
| 6-4-1 | When No Seek Sounds Emanate | 6-5 |
| 6-5. | RAW DATA CHECKS | 6-6 |
| 6-6. | REGISTER CHECKS | 6-7 |
| 6-7. | WD2793-02 CHECKS | 6-8 |

7. ALIGNMENT

7-1. ADJUSTMENT OF READ PULSE WIDTH ....... 7-1
7-2. ADJUSTMENT OF VCO FREQUENCY ........... 7-1
8. REPAIR PARTS AND FIXTURE

8-1. EXPLODED VIEW .................................. . 8-1
MAIN ASSEMBLY . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1
INTERFACE ASSEMBLY, FD ....................... 8-3
8-2. ELECTRICAL PARTS LIST ........................ . 8-4
8-3. PACKING MATERIAL AND ACCESSORY ........ 8-7

## CHAPTER 1 OPERATION

## 1-1. FEATURES

The HBD-50 floppydisk drive unit allows $31 / 2$-inch micro floppydisks to be used with an MSX standard computer.
The $31 / 2$-inch micro floppydisk is packaged in a hard case provided with a metal disk guard. 360 K bytes of data can be recorded on a single disk and he contents can be easily refreved and wirter. This hopydisk drive unit will greatly extend the information-handling capabilities of your MSX computer.

## 1-2. SPECIFICATIONS

Interface Section
Interface specifications
Internal ROM

Power consumption
Drive Section
Disk used
Disk type
Recording capacity
Fits to MSX slo
16 K bytes
Standard V/O routines
Standard DOS routines
MSX-Disk BASIC
Utility routines
$+5 \mathrm{~V}, 300 \mathrm{~mA}$ or less

Recording density
Track density
Total no. of cylinders
Total no. of tracks
Recording method
Data transfer rate Average latency time Access time
$3^{1 / /^{\prime \prime}}$ micro floppydisk
Single-sided
Unformatted: 500 K bytes Formatted: 360 K bytes
Sectors/track: Tracks/cylinder: Tracks/disk: 80 Bytes/disk: 360K
8187 bits/inch
135 tracks/inch
80 cylinders
80 tracks
MFM (Modified-Frequency Modulation)
500 rpm
00 msec
Average: 350 msec Between tracks: 12 msec Settling time: 30 msec
Controller WD2793-02

Genera
Power requirements
Power consumption
Operating temperature
Dimensions
Weight
Accessories

United kingdom model 240 V ac, 50 Hz
European model 220 V ac, 50 Hz United Kingdom model 25 W uropean model 24 W $10^{\circ} \mathrm{C}-35^{\circ} \mathrm{C}\left(50^{\circ} \mathrm{F}-95^{\circ} \mathrm{F}\right)$ $160 \times 67 \times 260 \mathrm{~mm}$ (w/h/d) For the drive unit only, including the projecing parts
nterface cartridge: 240 g
Drive unit: 2.7 kg (excludes the disk) Drive unit: 2.7 kg (excludes the disk)
Blank disk (1) Disk labels (3)

## 1-3. PARTS IDENTIFICATION

1-3-1. Drive Unit


NOTE
While the IN USE lamp is on, do not set the POWER switch to OFF, press the RESET button of the computer, disconnect the interface connector or remove the disk. Such actions may erase the contents of your disk

## Rear Panel



1-3-2. Interface Cartridge


Notes on connection
-Set the POWER switch of the device to be connected to OFF. Connec-

- Set the POWER switch of the device to be connected to OFF. Connec-

When disconnecting the connector or cartridge, be sure to the wires.
the plug or the
As a safety precaution, do not connect the power cord until all other
connections have been completed.


Earth wire connection


## 1-5. INSERTING A DISK

Without opening the metal disk guard, insert the floppy disk and gently push it in until you hear a click


## Removing the disk



## 1-6. STARTING UP MSX-DISK BASIC

MSX-Disk BASIC is stored in ROM (read-only memory) within the interface cartridge of HBD-50.
When the interface cartridge is inserted into the cartridge slot of the computer, Disk BASIC is started up by simply switching on the power of the disk drive unit and the computer.
2


1 Insert the interface cartridge.
2 Set the POWER switch of HBD- 50 to ON
3 Set the POWER switch of the computer to ON
When Disk-BASIC begins operating, the following message is displayed on the screen


4 Enter the year, month, and date using two digits per entry (and connecting each entry by a hyphen) or simply press the REETURN key ${ }^{1}$ When the RETURN key is pressed, the screen will display the follow ing message which indicates the Disk-BASIC has "signed on"


Precautions
Be sure to switch on the power of the drive unit before that of the computer. If the computer has been turned on first, either press the RESET button of the computer or set the POWER switch of the computer to OFF then to ON

1) With MSX Disk-BASIC, date data set in this situation is not used

## 1-7. FORMATTING A BLANK DISK

In order to use a new disk, you must first "format" it.
Formatting a disk enables you to store data on the disk.
Disks that are unformatted or have been initialized with a different for
mat cannot be used with MSX-Disk BASIC.
Note that formatting a disk erases all previously stored data and/or pro grams on that disk.

## The formatting procedure

1 Start up MSX.Disk BASIC.

 The screen will display the following message :


3 Press A] to specify the drive in which the disk to be formatted is to be inserted.
The following message will appear.


4 Insert the blank unformatted disk into the drive


5 Press any single key on the keyboard to start the formatting opera tion.

6 When formatting is completed, the following message is displayed on the screen:


This indicates that the computer is awaiting entry of a Disk BASIC command.

1-8. PIN ASSIGNMENT OF THE CONNECTORS
Pin Assignment of the Connectors
COMPUTER connector ( 34 pins)


| Pin No. | Signal | Pin No. | Signal | Pin No. | Signal |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | NC. | 13 | RETURN | 25 | RETURN |
| 2 | $\overline{\mathrm{DRQ}}$ | 14 | A1 | 26 | D4 |
| 3 | N.C. | 15 | RETURN | 27 | RETURN |
| 4 | $\overline{\text { RO }}$ | 16 | A2 | 28 | D5 |
| 5 | RETURN | 17 | return | 29 | RETURN |
| 6 | $\overline{\text { WE }}$ | 18 | Do | 30 | D6 |
| 7 | N.C. | 19 | return | 31 | RETURN |
| 8 | $\overline{\mathrm{cs}}$ | 20 | D1 | 32 | D7 |
| 9 | RETURN | 21 | RETURN | 33 | RETURN |
| 10 | $\overline{\text { RE }}$ | 22 | D2 | 34 | $\overline{\text { RESET }}$ |
| 11 | Return | 23 | return |  |  |
| +2 | A0 | 24 | D3 |  |  |

EXT DRIVE connector ( 34 pins)


| Pin No. | Signal | Pin No. | Signal | Pin No. | Signal |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\overline{\text { DISK CHANGE RESET }}$ | 13 | RETURN | 25 | RETURN |
| 2 | disk CHANGE | 14 | DRIVE SELECT 2 | 26 | Track 00 |
| 3 | RETURN | 15 | RETURN | 27 | RETURN |
| 4 | IN USE | 16 | $\overline{\text { MOTOR ON }}$ | 28 | WRITE PROTECT |
| 5 | Return | 17 | RETURN | 29 | RETURN |
| 6 | DRIVE SELECT 3 | 18 | DIRECTION | 30 | READ DATA |
| 7 | RETURN | 19 | RETURN | 31 | Return |
| 8 | INDEX | 20 | STEP | 32 | (MEAD SELECT) |
| 9 | RETURN | 21 | RETURN | 33 | RETURN |
| 10 | DRIVE SELECT 0 | 22 | WRITE DATA | 34 | $\overline{\text { READY }}$ |
| 11 | return | 23 | RETURN |  |  |
| 12 | daive select 1 | 24 | WRITE GATE |  |  |

## CHAPTER 2 <br> SERVICE INFORMATION

## 2-1. CAUTION AND OTHER INFORMATION

- For drive Ass'y, refer to the service materials of OAD-33V.
- A similar drive Ass'y is used in other systems, but is should not be used in HBD-50.
- When replacing the drive Ass'y, check the model nameplate and make sure it is a drive Ass'y exclusive to HBD-50 (MFD33V).



## 2-2. DISASSEMBLY

2-2-1. Disassembly of Case, Panel and Plate (bottom)
(1) Remove the two set screws (BVTT $3 \times 6$ ) of the case.
(2) Remove the case by sliding it in the direction indicated by the arrow.
(3) Loosen the two set screws (BVTT $3 \times 6$ ) of upper part of panel.
(4) Remove the two set screws (BVTT $3 \times 6$ ) of lower part of panel.
(5) Remove the panel by sliding it in the direction indicated by the arrow. (Note; That the eject button is not locked.)
(6) Loosen the five set screws (BVTT $3 \times 6$ ) of plate (bottom).
(7) Remove the plate (bottom) by sliding it in the direction indicated by the arrow.

2-2-2. Disassembly of FDC Board
(1) Remove the two set screws (BVTT $3 \times 6$ ).
(2) Pull out the FDC board in the direction indicated by the arrow. (Note; That the two connectors in the rear section should not be caught by the chassis.)
(3) Disconnect the connector CN109 (34P) on the rear side of
(4) drive Ass'y.
(4) Disconnect the power supply connector CN4 (34P).


## 2－2－3．Disassembly of Drive Ass＇y

Remove the case
Remove the front panel
（1）Remove the four set screws（ $\mathrm{P} 3 \times 6$ ）．
（2）Pull out the drive Ass＇y forward．
（3）Disconnect the connectors CN108（4P），and CN109（34P）
on the rear side of drive Assy
（4）Disconnect the LED connector．


## 2－3．REPAIR PARTS

1．Safety Related Components Warning．
Components identified by shading marked with $\triangle$ on the sche－ matic diagrams，exploded views and electrical spare parts list are critical to safe operation．Replace these components with Sony parts whose part numbers appear in this manual or in service bulletins and service manual supplemer published by Sony．
2．Replacement Parts supplied from Sony Parts Center will some－ times have a different shape from the original parts．This is due to＂accommodating the improved parts and／or engineering changes＂or＂standardization of genuine parts＂．
This manual＇s exploded views and electrical spare parts list indicate the parts numbers of＂the standardized genuine parts at present＂
Regarding engineering parts changes in our engineering depart－ ment，refer to Sony service bulletins and service manual supplements．

3．Printed Components in Bold－Face type on the exploded views and electrical spare parts list are normally stocked for replace－ ment purposes．The remaining parts are not normally required for routine service work．Orders for parts not shown in Bold－ Face type will be processed，but allow for additional delivery time．

4．Units for Capacitors，Inductors and Resistors
The following units are assumed in schematic diagrams，elect－ rical parts list and exploded views unless otherwise specified：

Capacitors：$\mu \mathrm{F}$
Inductors：$\mu \mathrm{H}$
Resistors：ohm

5．Abbreviations

| Ref．No． | Description |
| :---: | :---: |
| cロロ，cVロロ | CAPACITOR |
| CN－D | CONNECTOR |
| CPロロ | COMBINATION PARTS |
| Dロロ | DIODE |
| DLロロ | DELAY LINE |
| Fロロ | FUSE |
| FLDロ | FILTER |
| Hロロ | HEAD |
| 1 CaO | IC |
| Lロロ，LVロロ | INDUCTOR |
| Mロロ | MOTOR |
| PLロロ | LAMP |
| PMOロ | SOLENOID |
| Qロロ | TRANSISTOR |
| Rロロ，RVロロ | RESISTOR |
| RYロロ | RELAY |
| Sロロ | SWITCH |
| Tロロ | TRANSFORMER |
| THロロ | THERMISTOR |
| Xロロ | CRYSTAL |

## CHAPTER 3 <br> THEORY OF OPERATION

## 3-1. FDI

3-1-1. Memory Map
The FDI cartridge uses the MSX computer cartridge slot. Addresses 4000 H through 7FFFH on the memory map have been allocated to the FDI cartridge.


3-1-2. Selection by FDI Cartridge
(1) When an FDI cartridge has been inserted into the MSX computer cartridge slot, addresses 4000 H through 7 FFFH will be selected by the FDI connector signal CS1.
(2) In addition, IC4 will AND signal SLTSL and the IC8 (address decoder) output that has been inverted by IC3, and will provide an output to IC7 (ROM) pin CE for selection of the ROM.

## 3-1-3. Selection by FDC Controller

Individual registers of the FDC have been allocated to the memory space for addresses 7FF8H through 7FFFH, and are selected by address signals AO through A2 and signal CS.


## 3-2. FDC

3-2-1. Memory Map Det

| Address Port | Write Mode of CPU | Read Mode of CPU |
| :--- | :--- | :--- |
| 7FF8H | Command Register | Status Register |
| 7FF9H | Track Register | Track Register |
| 7FFAH | Sector Register | Sector Register |
| 7FFBH | Data Register | Data Register |
| 7FFCH | Side Select | Side Select |
| 7FFDH | Drive Select | Drive Select |
| 7FFFH |  | IRQ/DRQ Status |

## 3-2-2. Selection of Individual FDC (IC1)

 RegistersIndividual registers of the FDC (IC1) have been allocated to addresses 7FF8H through 7FFBH, and are selected by address signals $A O$ through $A 2$ and signal $\overline{\mathrm{CS}}$.


CR ;COMMAND REGISTER
DR ;DATA REGISTER
DSR ;DATA SHIFT REGISTER
SCR ;SECTOR REGISTER
TR ;TRACK REGISTER
STR ; STATUS REGISTER
REGISTER SELECTION

| $C S$ | $A 1$ | $A O$ | RE $=0$ | WE $=0$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | $X$ | $X$ | NON SELECT | $D A L=H I-Z$ |
| 0 | 0 | 0 | STR | CR |
| 0 | 0 | 1 | TR | TR |
| 0 | 1 | 0 | $S C R$ | $S C R$ |
| 0 | 1 | 1 | DR | $D R$ |
| 0 | LOW LEVEL |  |  |  |
| 1 | ;HIGH LEVEL |  |  |  |
| $X$ |  |  |  |  |
| ;DON'T CARE |  |  |  |  |
| HI-Z; HIGH IMPEDANCE |  |  |  |  |

## 3-2-3. Operation of Individual Registers

(1) Side Select


At " 0 ", side 0 will be selected, and at " 1 ", side 1 will be selected.

(3) IRQ/DRQ Status


IRQ will be made " 0 " when the completion of a command has been either concluded or terminated during process. DRQ will be made " 0 " when the data write/read are being requested.
(4) Command Register (CR)

This is an 8-bit write register, where the commands that correspond to the WD2793-02 operation will be written from the processor.
With the exception of a forced interrupt command, the command writing operation takes place after completion of the previous WD2793-02 command.
(5) Status Register (STR)

This is an 8 -bit read register. This register indicates the WD2793-02 internal status, the command execution processed status, and the disk drive status. The significance of individual bits will vary depending on whether the command is being executed or the command execution has already been concluded.
(6) Data Register (DR)

This is a read/write register. In a disk reading mode, the data read of the disk will be loaded into this register. In a disk writing mode, the data that has been written earlier into this register will be written into the disk. In a seek mode, the target track address will be written into this register.
(7) Track Register (TR)

This is an 8-bit read/write register. The low-high transistion of MR (master reset) will set TR at FFH. When TROO becomes low, TR will be made 00 H .
The track number at which the head is located will usually be set in this register. At WD2793-02, this value may either be updated or not, depending on the command. In the case of a read data command or a write data command, the contents of this register will be compared with an ID field track number read of the disk, and when they coincide with each other, the read or write operation will duly be carried out.
(8) Sector Register (SCR)

This is an 8-bit read/write register. In the case of a read data command or a write data command, the contents of this register will be compared with an ID field track number read of the disk, and when they coincide with each other, the read or write operation will duly be carried out. When under a read address command, the ID field track number will be retained intact.

## CHAPTER 4 BLOCK DIAGRAM

OVERALL


## ALL OVERALL



SEMICONDUCTOR PIN ASSIGNMENTS

MB74LS04 (FUJITSU)
SN74LSO4N (TI)
THL INVERTER

- TOP VIEW


MB74LS14 (FUUITSU)
SN74LSIUN (TI)
TL SCPMITT TRIGGER INVERTER
TL SCHMITT TRIGGER INVERTER

- TOP VIEW -


M53206P (MITSUBISHI)
SN7406N (TII)
TL INYEATER
TL INVERTER BUFFER/DRIVER WITH OPEN-COLLECTOR

- TOP VIEW -


MB74LS32 (FUJITSU)
SN74LS32N (TI)
TLL 2-INPUT POSITIVE-OR GATE

- TOP VIEW -


SN7407N (Tl)
TL BUFFER/DRIVER WITH OPEN-COLLECTOR
(10)

SN74LS1ON (TI)
TLL 3-INPUT positive nand gate


MB74LS38 (FUJITSU)
SN7438N (TI)
SN74LS38N (TI)
SN74LS38N (TI)
WITH OPEN.COLLECTOR

- TOP VIEW -


MB74LS74A (FUJITSU)
SN74LS74AN (TII)
TLLDTYPE FLIP FLOP WITH DIRECT SET/RESET

- TOP VIEW -


SN74ALS133N (T)
TIL 13 . NP NUT NANO GAT


MB74LS139 (FUJITS
MB74LSI 39N (TI)
TL 2-TO-4-LINE DECODER/DEMULTIPLEXER

- TOP VIEW -


MB74LS175 (FUJITSU
SN74LS175N (TII)
THL OTPE FLIP-FLOP WITH CLEAR
TTL D.TYPE FLIP.

- TOP VIEW -



MB74LS244 (FUUITSU
SN74LS244N (TI)
$\Pi 1$
3-STATE SCHMITT TAIGGER BUFFER/DRIVER

- TOP VIEW


MB74LS245 (FUJITSU)
SN74LS2245N (TI)
TTL BILATERAL SCHMITT TRIGGER BuS TRANSCEIVERS WITH 3.STATE OUTPUT
TIL BILATEAL S




$$
\begin{array}{l:l}
\text { AO-13 } & \text { ADORESS INPUT } \\
\text { CE } & \text { :CHIP ENABLE } \\
\text { DOD } & \text { DAAA } \\
\text { OE } & \text { OUTPUT ENABLE } \\
\text { PGM } & \text { PROGRAM }
\end{array}
$$

HBD-50(AE/UK)


$$
\begin{aligned}
& \begin{array}{lll}
\text { CR } & \text { :COMMAND REGISTER } \\
\text { OR } & \text {;DATA REGISTER }
\end{array} \\
& \begin{array}{l}
\text { OR ; DATA REGISTER } \\
\text { DSR }
\end{array} \\
& \begin{array}{l}
\text { DSR :DATA SHIGT REGISTER } \\
\text { SCR :SECTOR REGISTER }
\end{array} \\
& \text { tr itrack registe } \\
& \text { STR : STATUS REGISTE }
\end{aligned}
$$



TL431CP (TI)
ADJUSTABLE PR
ADJustable Precision shunt regulator
-top view -
catioce


positive voitage regulator ila
$\left\{\begin{array}{l}\mathrm{O} \\ \square \mathrm{SV} \mu \mathrm{PC} 7805 \mathrm{H} \\ 12 \mathrm{~V} \mu \mathrm{PC} 7812 \mathrm{H}\end{array}\right.$



## CHAPTER 5 <br> SCHEMATIC DIAGRAM AND PRINTED CIRCUIT BOARD

FUSE, LED, POWER, TR(A), TR(B) BOARD


FDI BOARD


Note: The blue pattern on board layout is COMPONENT SIDE. The gray pattern on board layout is SOLDERING SIDE.

FDI BOARD - COMPONENT SIDE -
1-612-717-12
HBD-50(AE/UK)

FDI BOARD


FDI BOARD




## FDC BOARD



Note: The blue pattern on board layout is COMPONENT SIDE. The gray pattern on board layout is SOLDERING SIDE.

FDC BOARD - COMPONENT SIDE -
1-612-716-13
HBD-50(AE/UK)

## Note: The blue pattern on board layout is COMPONENT SIDE. The gray pattern on board layout is SOLDERING SIDE.

| C1 | B-1 | CN1 | C-1 | R1 | B-1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| C2 | C-1 | CN2 | A-1 | R2 | B-1 |
| C3 | C-2 | CN3 | B-2 | R3 | C-2 |
| C4 | C -2 | CN4 | A-2 | R4 | C-2 |
| C5 | A-1 |  |  | R5 | C-2 |
| C6 | A-1 | D1 | B-1 | R6 | C-2 |
| C7 | C-1 | D2 | C-2 | R7 | B-2 |
| C8 | C-1 | D3 | C-1 | R8 | A-2 |
| C9 | A - 1 |  |  | R9 | C-2 |
| ClO | B-1 | IC1 | C-1 | R10 | A -2 |
| C11 | B-1 | 1 C 2 | C-1 | R11 | A -2 |
| C12 | A-2 | IC3 | B-1 | R12 | C-1 |
| C13 | A - 2 | IC4 | B-2 | R13 | C-2 |
| C14 | B - 2 | 1 C 5 | A -2 |  |  |
| C15 | B-2 | IC6 | A - 1 | RB1 | B-1 |
| C16 | A-2 | 1 C 7 | A -1 | RB2 | C-1 |
| C17 | B-2 | $1 \mathrm{C8}$ | A-2 | RB3 | C-2 |
| C18 | B - 2 | 1 C 9 | A - 2 |  |  |
| C19 | C-1 | 1 C 10 | C-2 | RV1 | C-1 |
| C20 | C-2 | IC11 | C-2 | RV2 | A - 2 |
| C21 | C-2 | l C 12 | C-2 |  |  |
| C22 | C-2 | IC13 | A - 2 | TH1 | C-2 |
| C23 | A - 2 | IC14 | A. 1 |  |  |
| C24 | A - 2 | IC15 | A - 1 | TP1 | C-2 |
| C25 | C-2 | IC16 | A - 2 | TP2 | C-2 |
| C26 | A - 2 |  |  | TP3 | C-2 |
| C27 | B - 2 | L1 | C-2 |  |  |
|  |  |  |  | X1 | C-2 |

